Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of peptidoglycan synthesis and remodelling

Abstract

Bacteria surround their cell membrane with a net-like peptidoglycan layer, called sacculus, to protect the cell from bursting and maintain its cell shape. Sacculus growth during elongation and cell division is mediated by dynamic and transient multiprotein complexes, the elongasome and divisome, respectively. In this Review we present our current understanding of how peptidoglycan synthases are regulated by multiple and specific interactions with cell morphogenesis proteins that are linked to a dynamic cytoskeletal protein, either the actin-like MreB or the tubulin-like FtsZ. Several peptidoglycan synthases and hydrolases require activation by outer-membrane-anchored lipoproteins. We also discuss how bacteria achieve robust cell wall growth under different conditions and stresses by maintaining multiple peptidoglycan enzymes and regulators as well as different peptidoglycan growth mechanisms, and we present the emerging role of ld-transpeptidases in peptidoglycan remodelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peptidoglycan synthesis, cleavage and modification.
Fig. 2: Lipid II flipping and peptidoglycan synthesis during elongation and division.
Fig. 3: Emerging themes in peptidoglycan synthase regulation.
Fig. 4: Peptidoglycan remodelling in response to stress.

Similar content being viewed by others

References

  1. Young, K. D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70, 660–703 (2006).

    PubMed  PubMed Central  Google Scholar 

  2. Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167 (2008).

    CAS  PubMed  Google Scholar 

  3. Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10, 123–136 (2012).

    CAS  Google Scholar 

  4. Goffin, C. & Ghuysen, J. M. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62, 1079–1093 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Meeske, A. J. et al. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537, 634–638 (2016). First report of peptidoglycan glycosyltransferase activity of a SEDS protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vollmer, W., Joris, B., Charlier, P. & Foster, S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol. Rev. 32, 259–286 (2008).

    CAS  PubMed  Google Scholar 

  7. Massidda, O., Novakova, L. & Vollmer, W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Env. Microbiol. 15, 3133–3157 (2013).

    CAS  Google Scholar 

  8. Pinho, M. G., Kjos, M. & Veening, J. W. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat. Rev. Microbiol. 11, 601–614 (2013).

    CAS  PubMed  Google Scholar 

  9. Billini, M., Biboy, J., Kuhn, J., Vollmer, W. & Thanbichler, M. A specialized MreB-dependent cell wall biosynthetic complex mediates the formation of stalk-specific peptidoglycan in Caulobacter crescentus. PLoS Genet. 15, e1007897 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Taylor, J. A. et al. Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori. eLife 9, e52482 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Woldemeskel, S. A. & Goley, E. D. Shapeshifting to survive: shape determination and regulation in Caulobacter crescentus. Trends Microbiol. 25, 673–687 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuru, E. et al. Fluorescent d-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nat. Microbiol. 2, 1648–1657 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Maitra, A. et al. Cell wall peptidoglycan in Mycobacterium tuberculosis: an Achilles’ heel for the TB-causing pathogen. FEMS Microbiol. Rev. 43, 548–575 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jacquier, N., Viollier, P. H. & Greub, G. The role of peptidoglycan in chlamydial cell division: towards resolving the chlamydial anomaly. FEMS Microbiol. Rev. 39, 262–275 (2015).

    CAS  PubMed  Google Scholar 

  15. Otten, C., Brilli, M., Vollmer, W., Viollier, P. H. & Salje, J. Peptidoglycan in obligate intracellular bacteria. Mol. Microbiol. 107, 142–163 (2018).

    CAS  PubMed  Google Scholar 

  16. Kuru, E. et al. Mechanisms of incorporation for d-amino acid probes that target peptidoglycan biosynthesis. ACS Chem. Biol. 14, 2745–2756 (2019). First systematic study of how fluorescent d-amino acid probes (FDAAs) are incorporated into bacterial peptidoglycan.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Holden, S. Probing the mechanistic principles of bacterial cell division with super-resolution microscopy. Curr. Opin. Microbiol. 43, 84–91 (2018).

    CAS  PubMed  Google Scholar 

  18. Baranova, N. et al. Diffusion and capture permits dynamic coupling between treadmilling FtsZ filaments and cell division proteins. Nat. Microbiol. 5, 407–417 (2020).

    CAS  PubMed  Google Scholar 

  19. Egan, A. J. F., Biboy, J., van’t Veer, I., Breukink, E. & Vollmer, W. Activities and regulation of peptidoglycan synthases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20150031 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Hernandez-Rocamora, V. M. et al. Coupling of polymerase and carrier lipid phosphatase prevents product inhibition in peptidoglycan synthesis. Cell Surf. 2, 1–13 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Caveney, N. A., Li, F. K. & Strynadka, N. C. Enzyme structures of the bacterial peptidoglycan and wall teichoic acid biogenesis pathways. Curr. Opin. Struct. Biol. 53, 45–58 (2018).

    CAS  PubMed  Google Scholar 

  22. Real, G. et al. Determinants for the subcellular localization and function of a nonessential SEDS protein. J. Bacteriol. 190, 363–376 (2008).

    CAS  PubMed  Google Scholar 

  23. Sjodt, M. et al. Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature 556, 118–121 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ehlert, K. & Holtje, J. V. Role of precursor translocation in coordination of murein and phospholipid synthesis in Escherichia coli. J. Bacteriol. 178, 6766–6771 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Meeske, A. J. et al. MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc. Natl Acad. Sci. USA 112, 6437–6442 (2015).

    CAS  PubMed  Google Scholar 

  27. Sham, L.-T. et al. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345, 220–222 (2014). Study showing the lipid II flipping activity of MurJ in a cellular assay with exogenous colicin M.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Qiao, Y. et al. Lipid II overproduction allows direct assay of transpeptidase inhibition by β-lactams. Nat. Chem. Biol. 13, 793–798 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruiz, N. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. Proc. Natl Acad. Sci. USA 105, 15553–15557 (2008).

    CAS  PubMed  Google Scholar 

  30. Ruiz, N. Filling holes in peptidoglycan biogenesis of Escherichia coli. Curr. Opin. Microbiol. 34, 1–6 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bolla, J. R. et al. Direct observation of the influence of cardiolipin and antibiotics on lipid II binding to MurJ. Nat. Chem. 10, 363–371 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuk, A. C., Mashalidis, E. H. & Lee, S. Y. Crystal structure of the MOP flippase MurJ in an inward-facing conformation. Nat. Struct. Mol. Biol. 24, 171–176 (2017). First report of the structure of MurJ, showing its similarity to membrane-embedded transporters. Kuk et al. (2019) present different inward-facing and outward-facing conformations of MurJ.

    CAS  PubMed  Google Scholar 

  33. Kuk, A. C. Y., Hao, A., Guan, Z. & Lee, S. Y. Visualizing conformation transitions of the lipid II flippase MurJ. Nat. Commun. 10, 1736 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Kumar, S., Rubino, F. A., Mendoza, A. G. & Ruiz, N. The bacterial lipid II flippase MurJ functions by an alternating-access mechanism. J. Biol. Chem. 294, 981–990 (2019).

    CAS  PubMed  Google Scholar 

  35. Zheng, S. et al. Structure and mutagenic analysis of the lipid II flippase MurJ from Escherichia coli. Proc. Natl Acad. Sci. USA 115, 6709–6714 (2018).

    CAS  PubMed  Google Scholar 

  36. Elhenawy, W. et al. The O-antigen flippase Wzk can substitute for MurJ in peptidoglycan synthesis in Helicobacter pylori and Escherichia coli. PLoS One 11, e0161587 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Harkness, R. E. & Braun, V. Colicin M inhibits peptidoglycan biosynthesis by interfering with lipid carrier recycling. J. Biol. Chem. 264, 6177–6182 (1988).

    Google Scholar 

  38. Liu, X., Meiresonne, N. Y., Bouhss, A. & den Blaauwen, T. FtsW activity and lipid II synthesis are required for recruitment of MurJ to midcell during cell division in Escherichia coli. Mol. Microbiol. 109, 855–884 (2018).

    CAS  PubMed  Google Scholar 

  39. Manat, G. et al. Deciphering the metabolism of undecaprenyl-phosphate: the bacterial cell-wall unit carrier at the membrane frontier. Microb. Drug. Resist. 20, 199–214 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. den Blaauwen, T., Hamoen, L. W. & Levin, P. A. The divisome at 25: the road ahead. Curr. Opin. Microbiol. 36, 85–94 (2017).

    Google Scholar 

  41. Du, S. & Lutkenhaus, J. Assembly and activation of the Escherichia coli divisome. Mol. Microbiol. 105, 177–187 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Egan, A. J. & Vollmer, W. The physiology of bacterial cell division. Ann. N. Y. Acad. Sci. 1277, 8–28 (2013).

    CAS  PubMed  Google Scholar 

  43. Cho, H. et al. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 1, 16172 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kraus, W. & Höltje, J. V. Two distinct transpeptidation reactions during murein synthesis in Escherichia coli. J. Bacteriol. 169, 3099–3103 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yousif, S. Y., Broome-Smith, J. K. & Spratt, B. G. Lysis of Escherichia coli by β-lactam antibiotics: deletion analysis of the role of penicillin-binding proteins 1A and 1B. J. Gen. Microbiol. 131, 2839–2845 (1985).

    CAS  PubMed  Google Scholar 

  46. Bertsche, U. et al. Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol. Microbiol. 61, 675–690 (2006).

    CAS  PubMed  Google Scholar 

  47. Boes, A., Olatunji, S., Breukink, E. & Terrak, M. Regulation of the peptidoglycan polymerase activity of PBP1b by antagonist actions of the core divisome proteins FtsBLQ and FtsN. mBio 10, e01912–e01918 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Leclercq, S. et al. Interplay between penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Sci. Rep. 7, 43306 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Müller, P. et al. The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli. J. Biol. Chem. 282, 36394–36402 (2007).

    PubMed  Google Scholar 

  50. Pazos, M. et al. Z-ring membrane anchors associate with cell wall synthases to initiate bacterial cell division. Nat. Commun. 9, 5090 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Banzhaf, M. et al. Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Mol. Microbiol. 85, 179–194 (2012).

    CAS  PubMed  Google Scholar 

  52. Ranjit, D. K., Jorgenson, M. A. & Young, K. D. PBP1B glycosyltransferase and transpeptidase activities play different essential roles during the de novo regeneration of rod morphology in Escherichia coli. J. Bacteriol. 199, e00612–e00616 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Hugonnet, J. E. et al. Factors essential for l,d-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in Escherichia coli. eLife 5, e19469 (2016). Study presenting an E. coli mutant strain that is capable of growing in the presence of a high concentration of ampicillin, producing exclusively ld-crosslinks in its peptidoglycan in order to bypass the need for dd-transpeptidases (that is, PBPs).

    PubMed  PubMed Central  Google Scholar 

  54. Morè, N. et al. Peptidoglycan remodeling enables Escherichia coli to survive sever outer membrane assembly defect. mBio 10, e02729-18 (2019). First demonstration of a peptidoglycan repair mechanism that is essential for survival of severe outer membrane defects in E. coli.

    PubMed  PubMed Central  Google Scholar 

  55. Mueller, E. A., Egan, A. J., Breukink, E., Vollmer, W. & Levin, P. A. Plasticity of Escherichia coli cell wall metabolism promotes fitness and antibiotic resistance across environmental conditions. eLife 8, e40754 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Paradis-Bleau, C. et al. Lipoprotein cofactors located in the outer membrane activate bacterial cell wall polymerases. Cell 143, 1110–1120 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Typas, A. et al. Regulation of peptidoglycan synthesis by outer-membrane proteins. Cell 143, 1097–1109 (2010). Along with Paradis-Bleau et al. (2010), first report of the outer-membrane-anchored lipoprotein activators of peptidoglycan synthases.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Egan, A. J. F. et al. Outer-membrane lipoprotein LpoB spans the periplasm to stimulate the peptidoglycan synthase PBP1B. Proc. Natl Acad. Sci. USA 111, 8197–8202 (2014).

    CAS  PubMed  Google Scholar 

  59. Jean, N. L. et al. Elongated structure of the outer-membrane activator of peptidoglycan synthesis LpoA: implications for PBP1A stimulation. Structure 22, 1047–1054 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kelley, A., Vijayalakshmi, J. & Saper, M. A. Crystal structures of the amino-terminal domain of LpoA from Escherichia coli and Haemophilus influenzae. Acta Crystallogr. F. Struct. Biol. Commun. 75, 368–376 (2019).

    CAS  PubMed  Google Scholar 

  61. King, D. T., Wasney, G. A., Nosella, M., Fong, A. & Strynadka, N. C. Structural insights into inhibition of Escherichia coli penicillin-binding protein 1B. J. Biol. Chem. 292, 979–993 (2017).

    CAS  PubMed  Google Scholar 

  62. Sung, M.-T. et al. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc. Natl Acad. Sci. USA 106, 8824–8829 (2009).

    CAS  PubMed  Google Scholar 

  63. Egan, A. J. F. et al. Induced conformational changes activate the peptidoglycan synthase PBP1B. Mol. Microbiol. 110, 335–356 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lupoli, T. J. et al. Lipoprotein activators stimulate Escherichia coli penicillin-binding proteins by different mechanisms. J. Am. Chem. Soc. 136, 52–55 (2014).

    CAS  PubMed  Google Scholar 

  65. Greene, N. G., Fumeaux, C. & Bernhardt, T. G. Conserved mechanism of cell-wall synthase regulation revealed by the identification of a new PBP activator in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 115, 3150–3155 (2018).

    CAS  PubMed  Google Scholar 

  66. Markovski, M. et al. Cofactor bypass variants reveal a conformational control mechanism governing cell wall polymerase activity. Proc. Natl Acad. Sci. USA 113, 4788–4793 (2016).

    CAS  PubMed  Google Scholar 

  67. Taguchi, A. et al. FtsW is a peptidoglycan polymerase that is functional only in complex with its cognate penicillin-binding protein. Nat. Microbiol. 4, 587–594 (2019). Report showing that the SEDS protein FtsW is only active as peptidoglycan polymerase in the presence of its cognate class B PBP (PBP3 in E. coli).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rohs, P. D. A. et al. A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery. PLoS Genet. 14, e1007726 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. Emami, K. et al. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2, 16253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Welsh, M. A., Schaefer, K., Taguchi, A., Kahne, D. & Walker, S. Direction of chain growth and substrate preferences of shape, elongation, division, and sporulation-family peptidoglycan glycosyltransferases. J. Am. Chem. Soc. 141, 12994–12997 (2019).

    CAS  PubMed  Google Scholar 

  71. Busiek, K. K. & Margolin, W. A role for FtsA in SPOR-independent localization of the essential Escherichia coli cell division protein FtsN. Mol. Microbiol. 92, 1212–1226 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ursinus, A. et al. Murein (peptidoglycan) binding property of the essential cell division protein FtsN from Escherichia coli. J. Bacteriol. 186, 6728–6737 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yahashiri, A., Jorgenson, M. A. & Weiss, D. S. Bacterial SPOR domains are recruited to septal peptidoglycan by binding to glycan strands that lack stem peptides. Proc. Natl Acad. Sci. USA 112, 11347–11352 (2015).

    CAS  PubMed  Google Scholar 

  74. Liu, B., Persons, L., Lee, L. & de Boer, P. A. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol. Microbiol. 95, 945–970 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gray, A. N. et al. Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. eLife 4, e07118 (2015).

    PubMed Central  Google Scholar 

  76. Liu, X., Biboy, J., Vollmer, W. & den Blaauwen, T. MreC and MreD balance the interaction between the elongasome proteins PBP2 and RodA. Preprint at https://doi.org/10.1101/769984 (2019).

  77. Contreras-Martel, C. et al. Molecular architecture of the PBP2–MreC core bacterial cell wall synthesis complex. Nat. Commun. 8, 776 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Errington, J. & Wu, L. J. Cell cycle machinery in Bacillus subtilis. Subcell. Biochem. 84, 67–101 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wagstaff, J. & Lowe, J. Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat. Rev. Microbiol. 16, 187–201 (2018).

    CAS  PubMed  Google Scholar 

  80. Bi, E. F. & Lutkenhaus, J. FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161–164 (1991).

    CAS  PubMed  Google Scholar 

  81. Levin, P. A. & Losick, R. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10, 478–488 (1996).

    CAS  PubMed  Google Scholar 

  82. Ma, X., Ehrhardt, D. W. & Margolin, W. Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc. Natl Acad. Sci. USA 93, 12998–13003 (1996).

    CAS  PubMed  Google Scholar 

  83. Anderson, D. E., Gueiros-Filho, F. J. & Erickson, H. P. Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J. Bacteriol. 186, 5775–5781 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Strauss, M. P. et al. 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol. 10, e1001389 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Holden, S. J. et al. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc. Natl Acad. Sci. USA 111, 4566–4571 (2014).

    CAS  PubMed  Google Scholar 

  86. Jacq, M. et al. Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy. mBio 6, e01108-15 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Bisson-Filho, A. W. et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355, 739–743 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, X. et al. GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355, 744–747 (2017). With Bisson-Filho et al. (2017), presentation of the first evidence for FtsZ treadmilling in live bacteria, following the in vitro demonstration of treadmilling of FtsZ–FtsA co-polymers on supported bilayers (Loose & Mitchison 2014). FtsZ treadmilling drives septal peptidoglycan synthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. McCausland, J. W. et al. Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism. Preprint at https://doi.org/10.1101/857813 (2019).

  90. Yang, X. et al. FtsW exhibits distinct processive movements driven by either septal cell wall synthesis or FtsZ treadmilling in E. coli. Preprint at https://doi.org/10.1101/850073 (2019).

  91. Monteiro, J. M. et al. Peptidoglycan synthesis drives an FtsZ-treadmilling-independent step of cytokinesis. Nature 554, 528–532 (2018). Demonstration that later stages in division septum closure require septal peptidoglycan synthesis but not FtsZ treadmilling.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Loose, M. & Mitchison, T. J. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns. Nat. Cell Biol. 16, 38–46 (2014).

    CAS  PubMed  Google Scholar 

  93. Perez, A. J. et al. Movement dynamics of divisome proteins and PBP2x:FtsW in cells of Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 116, 3211–3220 (2019).

    CAS  PubMed  Google Scholar 

  94. Wachi, M. et al. Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169, 4935–4940 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl Acad. Sci. USA 89, 7290–7294 (1992).

    CAS  PubMed  Google Scholar 

  96. Daniel, R. A. & Errington, J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767–776 (2003).

    CAS  PubMed  Google Scholar 

  97. Jones, L. J., Carballido-Lopez, R. & Errington, J. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913–922 (2001).

    CAS  PubMed  Google Scholar 

  98. Carballido-Lopez, R. & Errington, J. The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev. Cell 4, 19–28 (2003).

    CAS  PubMed  Google Scholar 

  99. Defeu Soufo, H. J. & Graumann, P. L. Dynamic localization and interaction with other Bacillus subtilis actin-like proteins are important for the function of MreB. Mol. Microbiol. 62, 1340–1356 (2006).

    CAS  PubMed  Google Scholar 

  100. Errington, J. Bacterial morphogenesis and the enigmatic MreB helix. Nat. Rev. Microbiol. 13, 241–248 (2015).

    CAS  PubMed  Google Scholar 

  101. Dominguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).

    CAS  PubMed  Google Scholar 

  102. Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl Acad. Sci. USA 108, 15822–15827 (2011).

    PubMed  Google Scholar 

  104. Zielińska, A. et al. Membrane fluidity controls peptidoglycan synthesis and MreB movement. Preprint at https://doi.org/10.1101/736819 (2019).

  105. Olshausen, P. V. et al. Superresolution imaging of dynamic MreB filaments in B. subtilis—a multiple-motor-driven transport? Biophys. J. 105, 1171–1181 (2013).

    PubMed  PubMed Central  Google Scholar 

  106. Billaudeau, C., Yao, Z., Cornilleau, C., Carballido-Lopez, R. & Chastanet, A. MreB forms subdiffraction nanofilaments during active growth in Bacillus subtilis. mBio 10, e01879-18 (2019).

  107. Ouzounov, N. et al. MreB orientation correlates with cell diameter in Escherichia coli. Biophys. J. 111, 1035–1043 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hussain, S. et al. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 7, e32471 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Salje, J., van den Ent, F., de Boer, P. & Lowe, J. Direct membrane binding by bacterial actin MreB. Mol. Cell 43, 478–487 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Pazos, M., Peters, K. & Vollmer, W. Robust peptidoglycan growth by dynamic and variable multi-protein complexes. Curr. Opin. Microbiol. 36, 55–61 (2017).

    CAS  PubMed  Google Scholar 

  111. Castanheira, S. et al. A specialized peptidoglycan synthase promotes Salmonella cell division inside host cells. mBio 8, e01685-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Nelson, D. E., Ghosh, A. S., Paulson, A. L. & Young, K. D. Contribution of membrane-binding and enzymatic domains of penicillin binding protein 5 to maintenance of uniform cellular morphology of Escherichia coli. J. Bacteriol. 184, 3630–3639 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Peters, K. et al. The redundancy of peptidoglycan carboxypeptidases ensures robust cell shape maintenance in Escherichia coli. mBio 7, e00819-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  114. Lommatzsch, J., Templin, M. F., Kraft, A. R., Vollmer, W. & Holtje, J. V. Outer membrane localization of murein hydrolases: MltA, a third lipoprotein lytic transglycosylase in Escherichia coli. J. Bacteriol. 179, 5465–5470 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Murphy, S. G. et al. Endopeptidase regulation as a novel function of the Zur-dependent zinc starvation response. mBio 10, e02620-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Heidrich, C. et al. Involvement of N-acetylmuramyl-l-alanine amidases in cell separation and antibiotic-induced autolysis of Escherichia coli. Mol. Microbiol. 41, 167–178 (2001).

    CAS  PubMed  Google Scholar 

  117. Peters, N. T. et al. Structure-function analysis of the LytM domain of EnvC, an activator of cell wall remodelling at the Escherichia coli division site. Mol. Microbiol. 89, 690–701 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Uehara, T., Parzych, K. R., Dinh, T. & Bernhardt, T. G. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis. EMBO J. 29, 1412–1422 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, D. C. et al. An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc. Natl Acad. Sci. USA 108, E1052–E1060 (2011).

    PubMed  Google Scholar 

  120. Rocaboy, M. et al. The crystal structure of the cell division amidase AmiC reveals the fold of the AMIN domain, a new peptidoglycan binding domain. Mol. Microbiol. 90, 267–277 (2013).

    CAS  PubMed  Google Scholar 

  121. Mesnage, S. et al. Molecular basis for bacterial peptidoglycan recognition by LysM domains. Nat. Commun. 5, 4269 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Pichoff, S., Du, S. & Lutkenhaus, J. Roles of FtsEX in cell division. Res. Microbiol. 170, 374–380 (2019).

    CAS  PubMed  Google Scholar 

  123. Tsang, M. J., Yakhnina, A. A. & Bernhardt, T. G. NlpD links cell wall remodeling and outer membrane invagination during cytokinesis in Escherichia coli. PLoS Genet. 13, e1006888 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. Meisner, J. et al. FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis. Mol. Microbiol. 89, 1069–1083 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sham, L. T., Barendt, S. M., Kopecky, K. E. & Winkler, M. E. Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc. Natl Acad. Sci. USA 108, E1061–E1069 (2011).

    PubMed  Google Scholar 

  126. Brunet, Y. R., Wang, X. & Rudner, D. Z. SweC and SweD are essential co-factors of the FtsEX–CwlO cell wall hydrolase complex in Bacillus subtilis. PLoS Genet. 15, e1008296 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Dominguez-Cuevas, P., Porcelli, I., Daniel, R. A. & Errington, J. Differentiated roles for MreB–actin isologues and autolytic enzymes in Bacillus subtilis morphogenesis. Mol. Microbiol. 89, 1084–1098 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Bartual, S. G. et al. Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae. Nat. Commun. 5, 3842 (2014).

    CAS  PubMed  Google Scholar 

  129. Singh, S. K., SaiSree, L., Amrutha, R. N. & Reddy, M. Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol. Microbiol. 86, 1036–1051 (2012).

    CAS  PubMed  Google Scholar 

  130. Singh, S. K., Parveen, S., SaiSree, L. & Reddy, M. Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis. Proc. Natl Acad. Sci. USA 112, 10956–10961 (2015).

    CAS  PubMed  Google Scholar 

  131. Su, M. Y. et al. Structural basis of adaptor-mediated protein degradation by the tail-specific PDZ-protease Prc. Nat. Commun. 8, 1516 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Banzhaf, M. et al. Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi-enzyme complexes in Escherichia coli. EMBO J. 39, e102246 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Höltje, J. V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62, 181–203 (1998).

    PubMed  PubMed Central  Google Scholar 

  134. Weaver, A. I. et al. Lytic transglycosylases RlpA and MltC assist in Vibrio cholerae daughter cell separation. Mol. Microbiol. 112, 1100–1115 (2019).

    CAS  PubMed  Google Scholar 

  135. Frirdich, E. et al. Peptidoglycan-modifying enzyme Pgp1 is required for helical cell shape and pathogenicity traits in Campylobacter jejuni. PLoS Pathog. 8, e1002602 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Frirdich, E. et al. The Campylobacter jejuni helical to coccoid transition involves changes to peptidoglycan and the ability to elicit an immune response. Mol. Microbiol. 112, 280–301 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Frirdich, E. et al. Peptidoglycan ld-carboxypeptidase Pgp2 influences Campylobacter jejuni helical cell shape and pathogenic properties and provides the substrate for the dl-carboxypeptidase Pgp1. J. Biol. Chem. 289, 8007–8018 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Sycuro, L. K. et al. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. Cell 141, 822–833 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Sycuro, L. K. et al. Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential. PLoS Pathog. 8, e1002603 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, D. C. et al. A genome-wide Helicobacter pylori morphology screen uncovers a membrane-spanning helical cell shape complex. J. Bacteriol. 201, e00724-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  141. Magnet, S. et al. Identification of the l,d-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J. Bacteriol. 189, 3927–3931 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Magnet, S., Dubost, L., Marie, A., Arthur, M. & Gutmann, L. Identification of the l,d-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J. Bacteriol. 190, 4782–4785 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Baranowski, C. et al. Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. eLife 7, e37516 (2018). Demonstration of the spatial separation of the activities of PBPs and ld-transpeptidases in the elongation of tip-growing mycobacteria.

    PubMed  PubMed Central  Google Scholar 

  144. Cameron, T. A., Anderson-Furgeson, J., Zupan, J. R., Zik, J. J. & Zambryski, P. C. Peptidoglycan synthesis machinery in Agrobacterium tumefaciens during unipolar growth and cell division. mBio 5, e01219-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Howell, M. et al. Agrobacterium tumefaciens divisome proteins regulate the transition from polar growth to cell division. Mol. Microbiol. 111, 1074–1092 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Mainardi, J. L. et al. Unexpected inhibition of peptidoglycan ld-transpeptidase from Enterococcus faecium by the β-lactam imipenem. J. Biol. Chem. 282, 30414–30422 (2007).

    CAS  PubMed  Google Scholar 

  147. Mainardi, J. L. et al. Balance between two transpeptidation mechanisms determines the expression of β-lactam resistance in Enterococcus faecium. J. Biol. Chem. 277, 35801–35807 (2002).

    CAS  PubMed  Google Scholar 

  148. Peters, K. et al. Copper inhibits peptidoglycan ld-transpeptidases suppressing β-lactam resistance due to bypass of penicillin-binding proteins. Proc. Natl Acad. Sci. USA 115, 10786–10791 (2018).

    CAS  PubMed  Google Scholar 

  149. Geiger, T., Pazos, M., Lara-Tejero, M., Vollmer, W. & Galan, J. E. Peptidoglycan editing by a specific ld-transpeptidase controls the muramidase-dependent secretion of typhoid toxin. Nat. Microbiol. 3, 1243–1254 (2018).

    CAS  PubMed  Google Scholar 

  150. Bernal-Cabas, M., Ayala, J. A. & Raivio, T. L. The Cpx envelope stress response modifies peptidoglycan cross-linking via the l,d-transpeptidase LdtD and the novel protein YgaU. J. Bacteriol. 197, 603–614 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Caveney, N. A. et al. Structural insight into YcbB-mediated β-lactam resistance in Escherichia coli. Nat. Commun. 10, 1849 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Wellcome Trust Senior Investigator Awards (to W.V. (101824/Z/13/Z) and J.E. (209500)).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed to all aspects of the article.

Corresponding author

Correspondence to Waldemar Vollmer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks D.-J. Scheffers, M. Winkler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Turgor

Force pushing the cytoplasmic membrane against the cell wall, caused by the osmotic flow of water into the cytoplasm.

Spore cortex

A specialized spore cell wall layer uniquely deposited inward from the enveloping mother cell compartment.

Proton motive force

(PMF). Force that promotes the movement of protons across membranes down the electrochemical potential gradient, in most cells generated by an electron transport chain that acts as a proton pump.

Elongasome

Dynamic multiprotein complex responsible for peptidoglycan synthesis in the lateral wall of many rod-shaped bacteria.

Actin

Family of cytoskeletal proteins that dynamically form microfilaments to perform a range of important cellular processes in both eukaryotes and prokaryotes. The prokaryotic actin-like MreB is part of the elongasome in many rod-shaped bacteria.

Divisome

Transient and dynamic multiprotein complex that divides a bacterial cell.

Tubulin

Family of cytoskeletal proteins that form microtubules in eukaryotes. The tubulin-like FtsZ forms dynamic filaments to organize cell division in bacteria.

Bactofilins

Bacterial cytoskeletal proteins that form sheet-like structures or filaments near the cell membrane to guide morphogentic processes.

3D-struc tured illumination microscopy

(3D-SIM). An imaging technique based on the use of spatially structured excitation illumination; it allows reconstruction of super-resolution images with approximately twice the resolution of regular, diffraction-limited microscopy (down to ~110 nm).

Photoactivated localization microscopy

(PALM). Super-resolution microscopy technique based on repetitive imaging of stochastically photoactivatable or photoswitchable fluorescent proteins; it can achieve a resolution of 10–20 nm.

Total internal reflection fluorescence microscopy

(TIRF). Uses an evanescent wave (a very thin electromagnetic field) to selectively excite and image fluorophores within a 100-nm to 200-nm distance from the coverslip–specimen interface.

RpoS

Alternative sigma factor for stationary-phase gene expression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egan, A.J.F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat Rev Microbiol 18, 446–460 (2020). https://doi.org/10.1038/s41579-020-0366-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-020-0366-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology