Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-noise high-temperature AlInAsSb/GaSb avalanche photodiodes for 2-μm applications

Abstract

Sensitive photodetectors that operate at a wavelength of 2 μm are required for applications in sensing and imaging but state-of-the-art devices are severely limited by high dark current density (Jdark). The narrow-bandgap materials required for mid-infrared (2–5 µm) detection are plagued by carrier recombination and band-to-band tunnelling; as a result, detectors must be operated at cryogenic temperatures. HgCdTe is currently the most commonly used materials system for these applications and has achieved Jdark = 3 × 10−4 A cm2 at a gain of 10 while operating at 125 K. Here, we report the details and results for avalanche photodiodes for 2-μm detection based on a separate absorption, charge, and multiplication design in the AlxIn1–xAsySb1–y materials system. We achieve comparable Jdark between 200–220 K and demonstrate very low excess noise (k ≈ 0.01) and gain >100 at room temperature. Such avalanche photodiodes could prove useful for receivers for eye-safe light imaging, detection and ranging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SACM APD designs.
Fig. 2: Capacitance–voltage and EQE.
Fig. 3: Current–voltage and gain.
Fig. 4: Excess noise.
Fig. 5: Dark current density.
Fig. 6: ΔVbdT.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Forrest, S. R. in Semiconductors and Semimetals Vol. 22, 329–387 (Elsevier, 1985).

  2. Campbell, J. C. Recent advances in avalanche photodiodes. J. Light. Technol. 34, 278–285 (2016).

    Article  ADS  Google Scholar 

  3. McIntyre, R. J. Multiplication noise in uniform avalanche diodes. IEEE Trans. Electron Devices ED-13, 164–168 (1966).

    Article  ADS  Google Scholar 

  4. Scholle, K., Lamrini, S., Koopmann, P. & Fuhrberg, P. in Frontiers in Guided Wave Optics and Optoelectronics (ed. Pal, B.) Ch. 2 (InTech, 2010); https://doi.org/10.5772/39538.

  5. Maddox, S. J. et al. Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping. Appl. Phys. Lett. 101, 151124 (2012).

    Article  ADS  Google Scholar 

  6. Abautret, J. et al. Characterization of midwave infrared InSb avalanche photodiode. J. Appl. Phys. 117, 244502 (2015).

    Article  ADS  Google Scholar 

  7. Gravrand, O. et al. HgCdTe detectors for space and science imaging: general issues and latest achievements. J. Electron. Mater. 45, 4532–4541 (2016).

    Article  ADS  Google Scholar 

  8. Mallick, S. et al. Ultralow noise midwave infrared InAs–GaSb strain layer superlattice avalanche photodiode. Appl. Phys. Lett. 91, 241111 (2007).

    Article  ADS  Google Scholar 

  9. Banerjee, K. et al. Midwave infrared InAs/GaSb strained layer superlattice hole avalanche photodiode. Appl. Phys. Lett. 94, 201107 (2009).

    Article  ADS  Google Scholar 

  10. Ramirez, D. A., Shao, J., Hayat, M. M. & Krishna, S. Midwave infrared quantum dot avalanche photodiode. Appl. Phys. Lett. 97, 221106 (2010).

    Article  ADS  Google Scholar 

  11. Jones, A. H. et al. AlxIn1– xAsySb1– y photodiodes with low avalanche breakdown temperature dependence. Opt. Express 25, 24340 (2017).

    Article  ADS  Google Scholar 

  12. Jones, A. H. et al. High gain, low dark current Al0.8In0.2As0.23Sb0.77 avalanche photodiodes. IEEE Photonics Technol. Lett. 31, 1948–1951 (2019).

    Article  ADS  Google Scholar 

  13. Woodson, M. E. et al. Low-noise AlInAsSb avalanche photodiode. Appl. Phys. Lett. 108, 081102 (2016).

    Article  ADS  Google Scholar 

  14. Bank, S. R. et al. Avalanche photodiodes based on the AlInAsSb materials system. IEEE J. Sel. Top. Quantum Electron. 24, 1–7 (2018).

    Article  Google Scholar 

  15. Maddox, S. J., March, S. D. & Bank, S. R. Broadly tunable AlInAsSb digital alloys grown on GaSb. Cryst. Growth Des. 16, 3582–3586 (2016).

    Article  Google Scholar 

  16. Zheng, J. et al. Characterization of band offsets in AlxIn1– xAsySb1– y alloys with varying Al composition. Appl. Phys. Lett. 115, 122105 (2019).

    Article  ADS  Google Scholar 

  17. Ren, M. et al. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes. Appl. Phys. Lett. 108, 191108 (2016).

    Article  ADS  Google Scholar 

  18. Yuan, Y. et al. AlInAsSb impact ionization coefficients. IEEE Photonics Technol. Lett. 31, 315–318 (2019).

    Article  ADS  Google Scholar 

  19. Muñoz Uribe, M. et al. Near-band-gap refractive index of GaSb. Mater. Sci. Eng. B 38, 259–262 (1996).

    Article  Google Scholar 

  20. Liu, H.-D. et al. Avalanche photodiode punch-through gain determination through excess noise analysis. J. Appl. Phys. 106, 064507 (2009).

    Article  ADS  Google Scholar 

  21. Cartier, E., Fischetti, M. V., Eklund, E. A. & McFeely, F. R. Impact ionization in silicon. Appl. Phys. Lett. 62, 3339–3341 (1993).

    Article  ADS  Google Scholar 

  22. Tan, L. J. J. et al. Temperature dependence of avalanche breakdown in InP and InAlAs. IEEE J. Quantum Electron. 46, 1153–1157 (2010).

    Article  ADS  Google Scholar 

  23. Rouvie, A. et al. High gain X bandwidth product over 140-GHz planar junction AlInAs avalanche photodiodes. IEEE Photonics Technol. Lett. 20, 455–457 (2008).

    Article  ADS  Google Scholar 

  24. Goh, Y. L. et al. InAlAs avalanche photodiode with type-II absorber for detection beyond 2 μm. In Proc. Infrared Technology and Applications XXXV Vol. 7298 (Society of Photo-optical Instrumentation Engineers, 2009); https://doi.org/10.1117/12.819818

  25. Ishimura, E. et al. Degradation mode analysis on highly reliable guardring-Free planar InAlAs avalanche photodiodes. J. Light. Technol. 25, 3686–3693 (2007).

    Article  ADS  Google Scholar 

  26. Hyun, K.-S. & Park, C.-Y. Breakdown characteristics in InP/InGaAs avalanche photodiode with pin multiplication layer structure. J. Appl. Phys. 81, 974–984 (1997).

    Article  ADS  Google Scholar 

  27. Sidhu, R. et al. 2.4 μm Cutoff wavelength avalanche photodiode on InP substrate. Electron. Lett. 42, 181–182 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Army Research Office (contract no. W911NF-17-1-0065) and DARPA (contract no. GG11972.153060). We acknowledge use of Texas Nanofabrication Facilities supported by the NSF NNCI Award 1542159.

Author information

Authors and Affiliations

Authors

Contributions

S.D.M. and S.R.B. carried out crystal growth and material characterization. A.H.J. and J.C.C. were responsible for device design, fabrication and experimental characterization. Analysis and simulations were performed by A.H.J. and S.D.M. A.H.J. and S.D.M. wrote the paper with input from S.R.B. and J.C.C.

Corresponding author

Correspondence to Joe C. Campbell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, A.H., March, S.D., Bank, S.R. et al. Low-noise high-temperature AlInAsSb/GaSb avalanche photodiodes for 2-μm applications. Nat. Photonics 14, 559–563 (2020). https://doi.org/10.1038/s41566-020-0637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-0637-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing