Skip to main content
Log in

Study on Viscous Fluid Flow in Disordered-Deformable Porous Media Using Hydro-mechanically Coupled Pore-Network Modeling

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

We investigate viscous fluid flows and concurrent fluid-driven deformations in porous media. The hydro-mechanically (H-M) coupled pore-network model (PNM) is developed, which combines the two-dimensional square-lattice PNM and block-spring model. The single-/two-phase flows into saturated deformable porous media are simulated through iterative two-way coupling method in H-M coupled PNM. A comparison between simulations and laboratory observations on flow patterns, solid deformation behaviors, and pressure responses ensures the validity of our H-M coupled PNM in both single-/two-phase flows. Parametric studies using the validated model examine the effects of mechanical coupling, stiffness of solid particles, the viscosity of invading fluids, injection flow rate, and degree of disorder during immiscible viscous fluid injection. The viscous fluid-driven deformation increases the pore throat size and hence reduces the injection pressure. In particular, the viscosity of invading fluid significantly alters the patterns of fluid propagation and solid deformation, along with a transition from the viscous fingering to the stable displacement with increasing viscosity. Moreover, the structural disorder in porous networks magnifies the irregular flow pattern, the pressure fluctuation associated with Haines jumps, and the poromechanical deformation. The particle-level force analysis delineates two distinct regimes: fluid invasion with no deformation and drag-driven deformation, which depends on the balance between the seepage drag force and the skeletal force. The presented results contribute to a better understanding of the H-M coupled fluid flows during the injection of viscous fluids into disordered-deformable porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aker, E., JØrgen MÅlØy, K., Hansen, A., Batrouni, G.G.: A two-dimensional network simulator for two-phase flow in porous media. Transp. Porous Media 32(2), 163–186 (1998). https://doi.org/10.1023/a:1006510106194

    Article  Google Scholar 

  • Atrazhev, V.V., Astakhova, T.Y., Dmitriev, D.V., Erikhman, N.S., Sultanov, V.I., Patterson, T., Burlatsky, S.F.: The model of stress distribution in polymer electrolyte membrane. J. Electrochem. Soc. 160(10), F1129–F1137 (2013)

    Article  Google Scholar 

  • Badillo, G.M., Segura, L.A., Laurindo, J.B.: Theoretical and experimental aspects of vacuum impregnation of porous media using transparent etched networks. Int. J. Multiph. Flow 37(9), 1219–1226 (2011). https://doi.org/10.1016/j.ijmultiphaseflow.2011.06.002

    Article  Google Scholar 

  • Blunt, M.J.: Flow in porous media—pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6(3), 197–207 (2001)

    Article  Google Scholar 

  • Budday, S., Nay, R., de Rooij, R., Steinmann, P., Wyrobek, T., Ovaert, T.C., Kuhl, E.: Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46, 318–330 (2015). https://doi.org/10.1016/j.jmbbm.2015.02.024

    Article  Google Scholar 

  • Chang, C., Kneafsey, T.J., Zhou, Q., Oostrom, M., Ju, Y.: Scaling the impacts of pore-scale characteristics on unstable supercritical CO2-water drainage using a complete capillary number. Int. J. Greenhouse Gas Control 86, 11–21 (2019). https://doi.org/10.1016/j.ijggc.2019.04.010

    Article  Google Scholar 

  • Cui, G., Liu, M., Dai, W., Gan, Y.: Pore-scale modelling of gravity-driven drainage in disordered porous media. Int. J. Multiph. Flow 114, 19–27 (2019). https://doi.org/10.1016/j.ijmultiphaseflow.2019.02.001

    Article  Google Scholar 

  • Fatt, I.: The network model of porous media. (1956)

  • Franceschini, G., Bigoni, D., Regitnig, P., Holzapfel, G.A.: Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54(12), 2592–2620 (2006)

    Article  Google Scholar 

  • Haines, W.B.: Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20(1), 97–116 (1930). https://doi.org/10.1017/s002185960008864x

    Article  Google Scholar 

  • Han, G., Kwon, T.-H., Lee, J.Y., Jung, J.: Fines migration and pore clogging induced by single- and two-phase fluid flows in porous media: from the perspectives of particle detachment and particle-level forces. Geomech. Energy Environ. (2019). https://doi.org/10.1016/j.gete.2019.100131

    Article  Google Scholar 

  • Holtzman, R., Juanes, R.: Crossover from fingering to fracturing in deformable disordered media. Phys. Rev. E 82(4), 046305 (2010)

    Article  Google Scholar 

  • Holtzman, R., Juanes, R.: Thermodynamic and hydrodynamic constraints on overpressure caused by hydrate dissociation: a pore-scale model. Res. Lett., Geophys (2011). https://doi.org/10.1029/2011gl047937

    Book  Google Scholar 

  • Hosseini Zadeh, A., Jeon, M.K., Kwon, T.H., Kim, S.: Study of poroelastic deformation in soft elastic granular materials during repetitive fluid injection. In: Paper presented at the 53rd U.S. Rock Mechanics/Geomechanics Symposium, New York City, New York (2019)

  • Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  • Kharaghani, A., Metzger, T., Tsotsas, E.: A proposal for discrete modeling of mechanical effects during drying, combining pore networks with DEM. AIChE J. 57(4), 872–885 (2011). https://doi.org/10.1002/aic.12318

    Article  Google Scholar 

  • Lee, D., Ryu, S.: A Validation study of the repeatability and accuracy of atomic force microscopy indentation using polyacrylamide gels and colloidal probes. J. Biomech. Eng. doi 10(1115/1), 4035536 (2017)

    Google Scholar 

  • Lenormand, R., Touboul, E., Zarcone, C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)

    Article  Google Scholar 

  • Lindquist, W.B., Venkatarangan, A.: Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth Part A. 24(7), 593–599 (1999). https://doi.org/10.1016/S1464-1895(99)00085-X

    Article  Google Scholar 

  • MacMinn, C.W., Dufresne, E.R., Wettlaufer, J.S.: Fluid-driven deformation of a soft granular material. Phys. Rev. X 5(1), 011020 (2015)

    Google Scholar 

  • Mahabadi, N., Jang, J.: The impact of fluid flow on force chains in granular media. Appl. Phys. Lett. 110(4), 041907 (2017). https://doi.org/10.1063/1.4975065

    Article  Google Scholar 

  • Maier, R., Laidlaw, W.G.: Fluid percolation in bond-site size-correlated three-dimensional networks. Transp. Porous Media 5(4), 421–428 (1990). https://doi.org/10.1007/BF01141994

    Article  Google Scholar 

  • Massonnet, D., Holzer, T., Vadon, H.: Land subsidence caused by the East Mesa Geothermal Field, California, observed using SAR interferometry. Geophys. Res. Lett. 24(8), 901–904 (1997). https://doi.org/10.1029/97gl00817

    Article  Google Scholar 

  • Pan, P., Wu, Z., Feng, X., Yan, F.: Geomechanical modeling of CO2 geological storage: a review. J. Rock Mech. Geotech. Eng. 8(6), 936–947 (2016). https://doi.org/10.1016/j.jrmge.2016.10.002

    Article  Google Scholar 

  • Pandey, S.N., Chaudhuri, A., Kelkar, S.: A coupled thermo-hydro-mechanical modeling of fracture aperture alteration and reservoir deformation during heat extraction from a geothermal reservoir. Geothermics 65, 17–31 (2017). https://doi.org/10.1016/j.geothermics.2016.08.006

    Article  Google Scholar 

  • Reeves, P.C., Celia, M.A.: A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model. Water Resour. Res. 32(8), 2345–2358 (1996)

    Article  Google Scholar 

  • Shin, H., Santamarina, J.C.: Desiccation cracks in saturated fine-grained soils: particle-level phenomena and effective-stress analysis. Géotechnique 61(11), 961–972 (2011). https://doi.org/10.1680/geot.8.P.012

    Article  Google Scholar 

  • Silin, D., Tomutsa, L., Benson, S.M., Patzek, T.W.: Microtomography and pore-scale modeling of two-phase fluid distribution. Transp. Porous Media 86(2), 495–515 (2011). https://doi.org/10.1007/s11242-010-9636-2

    Article  Google Scholar 

  • Silin, D.B., Jin, G., Patzek, T.W.: Robust determination of the pore space morphology in sedimentary rocks. In: Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado (2003)

  • Simms, P., Yanful, E.: A pore-network model for hydromechanical coupling in unsaturated compacted clayey soils. Can. Geotech. J. 42(2), 499–514 (2005)

    Article  Google Scholar 

  • Stan, C.A., Tang, S.K.Y., Whitesides, G.M.: Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Anal. Chem. 81(6), 2399–2402 (2009). https://doi.org/10.1021/ac8026542

    Article  Google Scholar 

  • Streit, J.E., Hillis, R.R.: Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy 29(9), 1445–1456 (2004). https://doi.org/10.1016/j.energy.2004.03.078

    Article  Google Scholar 

  • Støverud, K.H., Darcis, M., Helmig, R., Hassanizadeh, S.M.: Modeling concentration distribution and deformation during convection-enhanced drug delivery into brain tissue. Transp. Porous Media 92(1), 119–143 (2012)

    Article  Google Scholar 

  • Suh, H.S., Kang, D.H., Jang, J., Kim, K.Y., Yun, T.S.: Capillary pressure at irregularly shaped pore throats: implications for water retention characteristics. Adv. Water Resour. 110, 51–58 (2017). https://doi.org/10.1016/j.advwatres.2017.09.025

    Article  Google Scholar 

  • Vogel, H.-J., Tölke, J., Schulz, V.P., Krafczyk, M., Roth, K.: Comparison of a Lattice-Boltzmann model, a full-morphology model, and a pore network model for determining capillary pressure-saturation relationships. Vadose Zone J. 4(2), 380–388 (2005). https://doi.org/10.2136/vzj2004.0114

    Article  Google Scholar 

  • Wang, Z., Chauhan, K., Pereira, J.-M., Gan, Y.: Disorder characterization of porous media and its effect on fluid displacement. Phys. Rev. Fluids 4(3), 034305 (2019). https://doi.org/10.1103/PhysRevFluids.4.034305

    Article  Google Scholar 

  • Zhang, C., Oostrom, M., Wietsma, T.W., Grate, J.W., Warner, M.G.: Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy Fuels 25(8), 3493–3505 (2011)

    Article  Google Scholar 

  • Zheng, X., Mahabadi, N., Yun, T.S., Jang, J.: Effect of capillary and viscous force on CO2 saturation and invasion pattern in the microfluidic chip. J. Geophys. Res. Solid Earth 122(3), 1634–1647 (2017). https://doi.org/10.1002/2016jb013908

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank three anonymous reviewers for providing valuable comments and suggests, which was very helpful to improve this manuscript. This research was supported by the Basic Research Laboratory Program through the National Research Foundation of Korea (NRF) funded by the MSIT (NRF-2018R1A4A1025765) and by Korea Ministry of Land, Infrastructure and Transport (MOLIT) as “Innovative Talent Education Program for Smart City.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seunghee Kim or Tae-Hyuk Kwon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, MK., Kim, S., Hosseini Zadeh, A. et al. Study on Viscous Fluid Flow in Disordered-Deformable Porous Media Using Hydro-mechanically Coupled Pore-Network Modeling. Transp Porous Med 133, 207–227 (2020). https://doi.org/10.1007/s11242-020-01419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01419-8

Keywords

Navigation