Skip to main content
Log in

Prompt \(\upgamma \)-ray results of two deterministic modelings of prompt emission in fission

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The paper includes prompt \(\upgamma \)-ray results provided by two deterministic modelings of prompt emission developed at the University of Bucharest. The very good description of experimental prompt \(\upgamma \)-ray data as a function of A and TKE by the multi-parametric matrices as primary results of both modelings assures a supplementary validation of the models themselves. The very good agreement of the single distributions of different prompt \(\upgamma \)-ray quantities (as a function of A and as a function of TKE) with the experimental data constitutes a supplementary validation of the models together with the fragment distributions used. Linear correlations between different prompt \(\upgamma \)-ray quantities and the prompt neutron multiplicity are emphasized, too. A new method to calculate the prompt \(\upgamma \)-ray spectrum consisting of a global treatment based on the distribution of prompt \(\upgamma \)-ray energy per quanta is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this work are included in this published paper.]

References

  1. A. Oberstedt, T. Belgya, R. Billnert, R. Borcea, T. Brys, W. Geerts, A. Göök, F.-J. Hambsch, Z. Kis, T. Martinez, S. Oberstedt, L. Szentmiklosi, K. Takacs, M. Vidali, Phys. Rev. C 87, 051602(R) (2013)

    Article  ADS  Google Scholar 

  2. A. Oberstedt, R. Billnert, F.-J. Hambsch, S. Oberstedt, Phys. Rev. C 92, 014618 (2015)

    Article  ADS  Google Scholar 

  3. M. Lebois, J.N. Wilson, P. Halipré, A. Oberstedt, S. Oberstedt, P. Marini, C. Schmitt, S.J. Rose, S. Sien, M. Fallot, A. Porta, A.-A. Zakari, Phys. Rev. C 92, 034618 (2015)

    Article  ADS  Google Scholar 

  4. S. Oberstedt, R. Billnert, F.-J. Hambsch, M. Lebois, A. Oberstedt, J.N. Wilson, Eur. Phys. J. A 51, 178 (2015)

    Article  ADS  Google Scholar 

  5. L. Qi, M. Lebois, J.N. Wilson, A. Chantillon, S. Courtin, G. Fruet, G. Georgiev, D.G. Jenkins, B. Laurent, L. Le Meur, A. Maj, P. Martini, I. Matea, L. Morris, V. Natal, P. Napiorkowski, A. Oberstedt, S. Oberstedt, C. Schmitt, O. Serot, M. Stanoiu, B. Wasilewska, Phys. Rev. C 98, 014612 (2018)

    Article  ADS  Google Scholar 

  6. A. Gatera, T. Belgya, W. Geerts, A. Göök, F.-J. Hambsch, M. Lebois, B. Maroti, A. Moens, A. Oberstedt, S. Oberstedt, F. Postelt, L. Qi, L. Szentmiklosi, G. Sibbens, D. Vanleeuv, M. Vidali, F. Zeiser, Phys. Rev. C 95, 064609 (2017)

    Article  ADS  Google Scholar 

  7. A. Gatera, A. Göök, F.-J. Hambsch, A. Moens, A. Oberstedt, S. Oberstedt, G. Sibbens, D. Vanleeuw, M. Vidali, EPJ Web Conf. 169, 00003 (2018)

    Article  Google Scholar 

  8. O. Litaize, O. Serot, L. Berge, Eur. Phys. J. A 51, 177 (2015)

    Article  ADS  Google Scholar 

  9. P. Talou, R. Vogt, J. Randrup, M.E. Rising, S.A. Pozzi, J. Verbeke, M.T. Andrews, S.D. Clarke, P. Jaffe, M. Jandel, T. Kawano, M.J. Marcath, K. Meyerbachtol, L. Nakae, G. Rusev, A. Sood, I. Stetcu, C. Walker, Eur. Phys. J. A 54, 9 (2018)

    Article  ADS  Google Scholar 

  10. O. Litaize, L. Thuillez, O. Serot, A. Chebboubi, P. Tamagno, EPJ Web Conf. 169, 00012 (2018)

    Article  Google Scholar 

  11. A. Tudora, Eur. Phys. J. A 55, 98 (2019)

    Article  ADS  Google Scholar 

  12. A. Tudora, F.-J. Hambsch, Eur. Phys. J. A 53, 159 (2017)

    Article  ADS  Google Scholar 

  13. A. Tudora, Ann. Nucl. Energy 36, 72–84 (2009)

    Article  Google Scholar 

  14. R. Capote, Y.J. Chen, F.-J. Hambsch, N. Kornilov, J.P. Lestone, O. Litaize, B. Morillon, D. Neudecker, S. Oberstedt, N. Otuka, V.G. Pronyaev, A. Saxena, O. Serot, O.A. Scherbakov, N.C. Shu, D.L. Smith, P. Talou, A. Trkov, A.C. Tudora, R. Vogt, A.S. Vorobyev, Nucl. Data Sheets 131, 1–106 (2016)

    Article  ADS  Google Scholar 

  15. A. Tudora, F.-J. Hambsch, G. Giubega, I. Visan, Nucl. Phys. A 929, 260–292 (2014)

    Article  ADS  Google Scholar 

  16. A. Tudora, F.-J. Hambsch, G. Giubega, I. Visan, Nucl. Phys. A 933, 165–188 (2015)

    Article  ADS  Google Scholar 

  17. A. Tudora, F.-J. Hambsch, G. Giubega, I. Visan, Rom. Rep. Phys. 68, 571–581 (2016)

    Google Scholar 

  18. A. Tudora, F.-J. Hambsch, G. Giubega, Nucl. Phys. A 953, 95–116 (2016)

    Article  ADS  Google Scholar 

  19. A. Tudora, F.-J. Hambsch, G. Giubega, Eur. Phys. J. A 52, 182 (2016)

    Article  ADS  Google Scholar 

  20. A. Tudora, F.-J. Hambsch, V. Tobosaru, Phys. Rev. C 94, 044601 (2016)

    Article  ADS  Google Scholar 

  21. A. Tudora, F.-J. Hambsch, V. Tobosaru, Nucl. Sci. Eng. 192, 52–69 (2018)

    Article  Google Scholar 

  22. A. Tudora, F.-J. Hambsch, V. Tobosaru, Eur. Phys. J. A 54, 87 (2018)

    Article  ADS  Google Scholar 

  23. A. Tudora, Sistematics of different quantities related to sequential prompt emission in fission. Eur. Phys. J. A 56(3), 84 (2020)

    Article  ADS  Google Scholar 

  24. A. Tudora, A. Matei, Rom. J. Phys. 64, 301 (2019)

    Google Scholar 

  25. R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatiuk, A.J. Koning, S. Hilare, V.A. Plujko, M. Avrigeanu, O. Bersillon, M.B. Chadwick, T. Fukahory, Zhigang Ge, Yinlu Han, S. Kailas, J. Kopecky, V.M. Maslov, G. Reffo, M. Sin, E.Sh. Soukhovitskii, P. Talou, Nucl. Data Sheets \(\underline{110}\) (2009) 3107. RIPL-3 Reference Input Parameter Library of IAEA, (electronic library, available online at https://www-nds.iaea.org): segment IV (optical model parameterizations), segment I (masses and deformations), segment VI (Gamma Rays, GDR parameterizations)

  26. F. Pleasonton, R.L. Ferguson, H.W. Schmitt, Phys. Rev. C 6, 1023–1039 (1972)

    Article  ADS  Google Scholar 

  27. F. Pleasonton, Nucl. Phys. A 213, 413–425 (1973)

    Article  ADS  Google Scholar 

  28. H. Nifenecker, C. Signarbieux, R. Babinet, J. Poitou, Neutron and gamma emission in fission (review paper) IAEA-SM-174/207 117-178 (1973)

  29. A. Al-Adili, F.-J. Hambsch, S. Pomp, S. Oberstedt, Phys. Rev. C 86, 054601 (2012)

    Article  ADS  Google Scholar 

  30. A. Göök, F.-J. Hambsch, M. Vidali, Phys. Rev. C 90, 064611 (2014)

    Article  ADS  Google Scholar 

  31. C. Wagemans, E. Allaert, A. Deruitter, R. Barthélémy, P. Schillebeeckx, Phys. Rev. C 30, 218 (1984)

    Article  ADS  Google Scholar 

  32. T. Wang, G. Li, L. Zhu, Q. Meng, L. Wang, H. Han, W. Zhang, H. Xia, L. Hou, R. Vogt, J. Randrup, Phys. Rev. C 93, 014606 (2016)

    Article  ADS  Google Scholar 

  33. H. Albinsson, Yield of prompt \(\gamma \) radiation in slow neutron induced fission of 235U as a function of total kinetic energy, Report AE-417 (1971)

  34. J. Fréhaut, Neutron gamma competition in fission, IAEA-INDC(NDS)-220, 99-112 (1989)

  35. A. Göök, F.-J. Hambsch, S. Oberstedt, M. Vidali, Phys. Rev. C 98, 044615 (2018)

    Article  ADS  Google Scholar 

  36. G. Vladuca, F.-J. Hambsch, A. Tudora, S. Oberstedt, A. Oberstedt, F. Tovesson, D. Filipescu, Nucl. Phys. A 740, 3–19 (2004)

    Article  ADS  Google Scholar 

  37. G. Vladuca, A. Tudora, B. Morillon, D. Filipescu, Nucl. Phys. A 767, 112–137 (2006)

    Article  ADS  Google Scholar 

  38. E. Rich, A. Tudora, G. Noguère, J. Tomassi, J.-F. Lebrat, Nucl. Sci. Eng. 162, 171–191 (2009)

    Google Scholar 

  39. EXFOR Experimental Nuclear Data Library, target U-235, reaction (n,f), accession numbers 31729002–31729006, target Pu-239, reaction (n,f), accession numbers 31778002–31778005, target Cf-252, reaction (0,f), accession numbers 23197010–23197013 and 23417002, 23417003. https://www-nds.iaea.org

  40. V.V. Verbinski, H. Weber, R.E. Sund, Phys. Rev. C 7, 1173–1185 (1973)

    Article  ADS  Google Scholar 

  41. A. Chyzh, C.Y. Wu, E. Kwan, R.A. Henderson, J.M. Gostic, T.A. Bredeweg, A. Couture, R.C. Haight, A.C. Hayes-Stervenz, M. Jandel, H.V. Lee, J.M. O’Donnell, J.L. Ullmann, Phys. Rev. C 87, 034620 (2013)

    Article  ADS  Google Scholar 

  42. D.G. Madland, R. Nix, Nucl. Sci. Eng. 81, 213–271 (1982)

    Article  Google Scholar 

  43. A. Tudora, F.-J. Hambsch, V. Tobosaru, Eur. Phys. J. A 54(5), 87 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A part of this work was done in the frame of the Romanian Project PN-III-P4_PCE-2016-0014 (Contract No.7/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabella Tudora.

Additional information

Communicated by Cedric Simenel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tudora, A. Prompt \(\upgamma \)-ray results of two deterministic modelings of prompt emission in fission. Eur. Phys. J. A 56, 128 (2020). https://doi.org/10.1140/epja/s10050-020-00123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00123-x

Navigation