Skip to main content
Log in

Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The printable electrode interlayer with excellent thickness tolerance is crucial for mass production of organic solar cells (OSCs) by solution-based print techniques. Herein, high-quality printable SnO2 films are simply fabricated by spin-coating or blade-coating the chemical precipitated SnO2 colloid precursor with post thermal annealing treatment. The SnO2 films possess outstanding optical and electrical properties, especially extreme thickness-insensitivity. The interfacial electron trap density of SnO2 cathode interlayers (CILs) are very low and show negligible increase as the thicknesses increase from 10 to 160 nm, resulting in slight change of the power conversion efficiencies (PCEs) of the PM6:Y6 based OSCs from 16.10% to 13.07%. For blade-coated SnO2 CIL, the PCE remains high up to 12.08% even the thickness of SnO2 CIL is high up to 530 nm. More strikingly, the large-area OSCs of 100 mm2 with printed SnO2 CILs obtain a high efficiency of 12.74%. To the best of our knowledge, this work presents the first example for the high-performance and large-area OSCs with the thickness-insensitive SnO2 CIL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  2. Heeger AJ. Adv Mater, 2014, 26: 10–28

    Article  CAS  Google Scholar 

  3. Kaltenbrunner M, White MS, Glowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S. Nat Commun, 2012, 3: 1–7

    Article  Google Scholar 

  4. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

  5. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Article  CAS  Google Scholar 

  6. Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W, Hou J. Natl Sci Rev, 2019, doi: https://doi.org/10.1093/nsr/nwz200

  7. Kang Q, Ye L, Xu B, An C, Stuard SJ, Zhang S, Yao H, Ade H, Hou J. Joule, 2019, 3: 227–239

    Article  CAS  Google Scholar 

  8. Dong S, Zhang K, Liu X, Yin Q, Yip HL, Huang F, Cao Y. Sci China Chem, 2019, 62: 67–73

    Article  CAS  Google Scholar 

  9. Hoth C, Choulis S, Schilinsky P, Brabec C. Adv Mater, 2007, 19: 3973–3978

    Article  CAS  Google Scholar 

  10. Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L. Adv Mater, 2010, 22: E135–E138

    Article  CAS  Google Scholar 

  11. He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y. Adv Mater, 2011, 23: 4636–4643

    Article  CAS  Google Scholar 

  12. Li W, Hendriks KH, Roelofs WSC, Kim Y, Wienk MM, Janssen RAJ. Adv Mater, 2013, 25: 3182–3186

    Article  CAS  Google Scholar 

  13. Chu TY, Lu J, Beaupre S, Zhang Y, Pouliot JR, Wakim S, Zhou J, Leclerc M, Li Z, Ding J, Tao Y. J Am Chem Soc, 2011, 133: 4250–4253

    Article  CAS  Google Scholar 

  14. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE. Adv Mater, 2007, 19: 1551–1566

    Article  CAS  Google Scholar 

  15. Zhao W, Zhang S, Zhang Y, Li S, Liu X, He C, Zheng Z, Hou J. Adv Mater, 2018, 30: 1704837

    Article  Google Scholar 

  16. Lin Y, Jin Y, Dong S, Zheng W, Yang J, Liu A, Liu F, Jiang Y, Russell TP, Zhang F, Huang F, Hou L. Adv Energy Mater, 2018, 8: 1701942

    Article  Google Scholar 

  17. Lv M, Li S, Jasieniak JJ, Hou J, Zhu J, Tan Z, Watkins SE, Li Y, Chen X. Adv Mater, 2013, 25: 6889–6894

    Article  CAS  Google Scholar 

  18. Liu S, Zhang K, Lu J, Zhang J, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2013, 135: 15326–15329

    Article  CAS  Google Scholar 

  19. Zhang ZG, Li H, Qi B, Chi D, Jin Z, Qi Z, Hou J, Li Y, Wang J. J Mater Chem A, 2013, 1: 9624–9629

    Article  CAS  Google Scholar 

  20. Kang Q, Yang B, Xu Y, Xu B, Hou J. Adv Mater, 2018, 30: 1801718

    Article  Google Scholar 

  21. Yang B, Chen Y, Cui Y, Liu D, Xu B, Hou J. Adv Energy Mater, 2018, 8: 1800698

    Article  Google Scholar 

  22. Liu J, Wu J, Shao S, Deng Y, Meng B, Xie Z, Geng Y, Wang L, Zhang F. ACS Appl Mater Interfaces, 2014, 6: 8237–8245

    Article  CAS  Google Scholar 

  23. Cai W, Gong X, Cao Y. Sol Energy Mater Sol Cells, 2010, 94: 114–127

    Article  CAS  Google Scholar 

  24. Jiang Q, Zhang X, You J. Small, 2018, 14: 1801154

    Article  Google Scholar 

  25. Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y. J Am Chem Soc, 2015, 137: 6730–6733

    Article  CAS  Google Scholar 

  26. Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu SF. Nat Commun, 2018, 9: 3239

    Article  Google Scholar 

  27. Bai Y, Zhao C, Chen X, Zhang S, Zhang S, Hayat T, Alsaedi A, Tan Z, Hou J, Li Y. J Mater Chem A, 2019, 7: 15887–15894

    Article  CAS  Google Scholar 

  28. Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng YB, Huang F. Nat Commun, 2018, 9: 4609

    Article  Google Scholar 

  29. Liu Q, Qin MC, Ke WJ, Zheng XL, Chen Z, Qin PL, Xiong LB, Lei HW, Wan JW, Wen J, Yang G, Ma JJ, Zhang ZY, Fang GJ. Adv Funct Mater, 2016, 26: 6069–6075

    Article  CAS  Google Scholar 

  30. Bai Y, Yang B, Zhao C, Shi Z, Hayat T, Alsaedi A, Tan Z. J Mater Chem A, 2018, 6: 7257–7264

    Article  CAS  Google Scholar 

  31. Bob B, Song TB, Chen CC, Xu Z, Yang Y. Chem Mater, 2013, 25: 4725–4730

    Article  CAS  Google Scholar 

  32. Kwoka M, Ottaviano L, Passacantando M, Santucci S, Czempik G, Szuber J. Thin Solid Films, 2005, 490: 36–42

    Article  CAS  Google Scholar 

  33. Li W, Ye L, Li S, Yao H, Ade H, Hou J. Adv Mater, 2018, 30: 1707170

    Article  Google Scholar 

  34. Bube RH. J Appl Phys, 1962, 33: 1733–1737

    Article  CAS  Google Scholar 

  35. Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Science, 2015, 347: 967–970

    Article  CAS  Google Scholar 

  36. Mandoc M, Veurman W, Koster L, de Boer B, Blom P. Adv Funct Mater, 2007, 17: 2167–2173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51873007, 51961165102, 21835006), and the Fundamental Research Funds for the Central Universities in China (2019MS025, 2018MS032, 2017MS027, 2017XS084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan’ao Tan.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2020_9744_MOESM1_ESM.pdf

Printable SnO2 Cathode Interlayer with up to 500 nm Thickness-Tolerance for High-Performance and Large-Area Organic Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Zhao, C., Zhang, S. et al. Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells. Sci. China Chem. 63, 957–965 (2020). https://doi.org/10.1007/s11426-020-9744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9744-4

Keywords

Navigation