Skip to main content
Log in

Effect of geometrical confinement on the flow of soft microgel particle pastes

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this paper, we determine the effect of confinement on the shear flow of concentrated soft microgel particle suspensions. Utilizing a flexure-based microgap rheometer (FMR), aqueous suspensions of swollen P(NIPAM-co-AA) microgel particles of 4μ m diameter at different volume fractions larger than 64 vol% are subjected to shearing deformations between plates separated by gaps of 5–120μ m while monitoring the stress response at different rates. Describing the stress evolution from a balance of elastohydrodynamic lubrication and elastic forces following the approach of Cloitre and Bonnecaze, it could be shown that already below a critical confinement level on the order of 10 particle diameters an increase of the interparticle pressure leads to a rising shear stress at a given rate in the yielded regime. This effect is strongest for particle volume fractions close to the critical closest packing, with two orders of magnitude increase in flow resistance when approaching the single-particle confinement level, whereas this confinement effect on the flow decreases when raising the concentration. Furthermore, it could be shown that, at the onset of the yielding of the suspensions, the confinement is increasing the effective modulus, but not the yield strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adams S, Frith WJ, Stokes JR (2004) Influence of particle modulus on the rheological properties of agar microgel suspensions. J Rheol 48(6):1195

    Article  CAS  Google Scholar 

  • Baik SJ (2011) Microrheological investigation of sheared thin films with complex structure. PhD thesis, KU Leuven

  • Baik SJ, Moldenaers P, Clasen C (2011) A sliding plate microgap rheometer for the simultaneous measurement of shear stress and first normal stress difference. Rev Sci Instrum 82(3):035121

    Article  CAS  Google Scholar 

  • Bocquet L, Colin A, Ajdari A (2009) Kinetic theory of plastic flow in soft glassy materials. Phys Rev Lett 103(3):036001

    Article  CAS  Google Scholar 

  • Bonnoit C, Lanuza J, Lindner A, Clement E (2010) Mesoscopic length scale controls the rheology of dense suspensions. Phys Rev Lett 105(10):108302

    Article  CAS  Google Scholar 

  • Cho JK, Meng Z, Lyon LA, Breedveld V (2009) Tunable attractive and repulsive interactions between pH-responsive microgels. Soft Matter 5(19):3599

    Article  CAS  Google Scholar 

  • Clasen C (2012) Determining the true slip of a yield stress material with a sliding plate rheometer. Rheol Acta 51(10):883–890

    Article  CAS  Google Scholar 

  • Clasen C, McKinley GH (2004) Gap-dependent microrheometry of complex liquids. J Non-Newtonian Fluid Mech 124(1–3):1–10

    Article  CAS  Google Scholar 

  • Clasen C, Gearing BP, McKinley GH (2006) The flexure-based microgap rheometer (FMR). J Rheol 50 (6):883–905

    Article  CAS  Google Scholar 

  • Clasen C, Kavehpour HPP, Mckinley GH (2010) Bridging tribology and microrheology of thin films. Rheol Acta 20(4):1–13

    Google Scholar 

  • Cloitre M, Bonnecaze RT (2017) A review on wall slip in high solid dispersions. Rheol Acta 56(3):283–305

    Article  CAS  Google Scholar 

  • Cloitre M, Borrega R, Monti F, Leibler L (2003a) Glassy dynamics and flow properties of soft colloidal pastes. Phys Rev Lett 90(6):068303

  • Cloitre M, Borrega R, Monti F, Leibler L (2003b) Structure and flow of polyelectrolyte microgels: from suspensions to glasses. Comptes Rendus Physique 4(2):221–230

  • Cohen-Addad S, Höhler R, Pitois O (2013) Flow in foams and flowing foams. Annu Rev Fluid Mech 45:241–267

    Article  Google Scholar 

  • Davies GA, Stokes JR (2008) Thin film and high shear rheology of multiphase complex fluids. J Non-Newtonian Fluid Mech 148(1–3):73–87

    Article  CAS  Google Scholar 

  • Debord SB, Lyon LA (2003) Influence of particle volume fraction on packing in responsive hydrogel colloidal crystals. J Phys Chem B 107(13):2927–2932

    Article  CAS  Google Scholar 

  • Erni P, Varagnat M, Clasen C, Crest J, McKinley GH (2011) Microrheometry of sub-nanolitre biopolymer samples: non-Newtonian flow phenomena of carnivorous plant mucilage. Soft Matter 7(22):10889–10898

    Article  CAS  Google Scholar 

  • Fernandez-Nieves A, Wyss H, Johan M, Weitz D (eds) (2011) Microgel suspensions: fundamentals and applications. Wiley, Hoboken

  • Goyon J, Colin A, Ovarlez G, Ajdari A, Bocquet L (2008) Spatial cooperativity in soft glassy flows. Nature 454(7200):84–87

    Article  CAS  Google Scholar 

  • Goyon J, Colin A, Bocquet L (2010) How does a soft glassy material flow: finite size effects, non local rheology, and flow cooperativity. Soft Matter 6(12):2668–2678

    Article  CAS  Google Scholar 

  • Hamrock J (1991) Fundamentals fluid film lubrication of NASA

  • Hashmi SM, Dufresne ER (2009) Mechanical properties of individual microgel particles through the deswelling transition. Soft Matter 5(19):3682

    Article  CAS  Google Scholar 

  • Heyes DM, Brańka A C (2009) Interactions between microgel particles. Soft Matter 5(14):2681

    Article  CAS  Google Scholar 

  • Höhler R, Cohen-Addad S (2005) Rheology of liquid foam. J Phys: Condens Matter 17(41):R1041

    Google Scholar 

  • Jofore BD, Erni P, Vleminckx G, Moldenaers P, Clasen C (2015) Rheology of microgels in single particle confinement. Rheol Acta 54(7):581–600

    Article  CAS  Google Scholar 

  • Katgert G, Latka A, Möbius ME, van Hecke M (2009) Flow in linearly sheared two-dimensional foams: from bubble to bulk scale. Phys Rev E 79(6):066318

    Article  CAS  Google Scholar 

  • Katgert G, Tighe BP, Möbius ME, van Hecke M (2010) Couette flow of two-dimensional foams. Europhys Lett 90(5):54002

    Article  CAS  Google Scholar 

  • Kojić N, Bico J, Clasen C, McKinley GH (2006) Ex vivo rheology of spider silk. J Exper Biol 209 (21):4355–4362

    Article  Google Scholar 

  • Kratz K, Hellweg T, Eimer W (2000) Influence of charge density on the swelling of colloidal poly(N-isopropylacrylamide-co-acrylic acid) microgels. Colloids Surf A Physicochem Eng Asp 170(2):137–149

    Article  CAS  Google Scholar 

  • Langlois VJ, Hutzler S, Weaire D (2008) Rheological properties of the soft-disk model of two-dimensional foams. Phys Rev E 78(2):021401

    Article  CAS  Google Scholar 

  • Liu Y, Lorusso D, Holdsworth DW, Poepping TL, de Bruyn JR (2018) Effect of confinement on the rheology of a yield-stress fluid. J Non-Newtonian Fluid Mech 261:25–32

    Article  CAS  Google Scholar 

  • Mason TG, Lacasse MD, Grest GS, Levine D, Bibette J, Weitz DA (1997) Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys Rev E 56(3):3150–3166

    Article  CAS  Google Scholar 

  • Meeker SP, Bonnecaze RT, Cloitre M (2004a) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48(6):1295

  • Meeker SP, Bonnecaze RT, Cloitre M (2004b) Slip and flow in soft particle pastes. Phys Rev Lett 92 (19):198302–198301

  • Meng Z, Smith MH, Lyon LA (2009) Temperature-programmed synthesis of micron-sized multi-responsive microgels. Colloid Polym Sci 287(3):277–285

    Article  CAS  Google Scholar 

  • Mohan L, Bonnecaze RT, Cloitre M (2013a) Microscopic origin of internal stresses in jammed soft particle suspensions. Phys Rev Lett 111(26):268301

  • Mohan L, Pellet C, Cloitre M, Bonnecaze RT (2013b) Local mobility and microstructure in periodically sheared soft particle glasses and their connection to macroscopic rheology. J Rheol 57(3):1023–1046

  • Mohan L, Cloitre M, Bonnecaze RT (2015) Build-up and two-step relaxation of internal stress in jammed suspensions. J Rheol 59(1):63–84

    Article  CAS  Google Scholar 

  • Monti F, Fu SY, Iliopoulos I, Cloitre M (2008) Doubly responsive polymer-microgel composites: rheology and structure. Langmuir 24(20):11474–11482

    Article  CAS  Google Scholar 

  • Öle Kiminta D, Luckham P, Lenon S (1995) The rheology of deformable and thermoresponsive microgel particles. Polymer 36(25):4827–4831

    Article  Google Scholar 

  • Peyla P, Verdier C (2011) New confinement effects on the viscosity of suspensions. Europhys Lett 94 (4):44001

    Article  CAS  Google Scholar 

  • Princen H (1983) Rheology of foams and highly concentrated emulsions: I. Elastic properties and yield stress of a cylindrical model system. J Colloid Interface Sci 91(1):160–175

    Article  CAS  Google Scholar 

  • Princen H (1985) Rheology of foams and highly concentrated emulsions. II. Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions. J Colloid Inter Sci 105(1):150–171

    Article  CAS  Google Scholar 

  • Rogers SA (2012) A sequence of physical processes determined and quantified in LAOS: an instantaneous local 2D/3D approach. J Rheol 56(5):1129–1151

    Article  CAS  Google Scholar 

  • Scheffold F, Cardinaux F, Mason TG (2013) Linear and nonlinear rheology of dense emulsions: identifying the glass and jamming regimes. J Phys: Condens Matter 25:502101. 1305, 5182

    CAS  Google Scholar 

  • Seth JR (2008) On the rheology of dense pastes of soft particles. The University of Texas at Austin, PhD thesis

    Google Scholar 

  • Seth JR, Cloitre M, Bonnecaze RT (2006) Elastic properties of soft particle pastes. J Rheol 50(3):353–376

    Article  CAS  Google Scholar 

  • Seth JR, Cloitre M, Bonnecaze RT (2008) Influence of short-range forces on wall-slip in microgel pastes. J Rheol 52(5):1241– 1268

    Article  CAS  Google Scholar 

  • Seth JR, Mohan L, Locatelli-Champagne C, Cloitre M, Bonnecaze RT (2011) A micromechanical model to predict the flow of soft particle glasses. Nat Mater 10(11):838–843

    Article  CAS  Google Scholar 

  • Sun S, Hu J, Tang H, Wu P (2011) Spectral interpretation of thermally irreversible recovery of poly(N-isopropylacrylamide-co-acrylic acid) hydrogel. Phys Chem Chem Phys: PCCP 13(11):5061–5067

    Article  CAS  Google Scholar 

  • Vleminckx G, Clasen C (2014) The dark side of microrheology: non-optical techniques. Curr Opinion Colloid Interface Sci 19(6):503–513

    Article  CAS  Google Scholar 

  • Wang Y, Krishan K, Dennin M (2006) Impact of boundaries on velocity profiles in bubble rafts. Phys Rev E 73(3):031401

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge, in particular, P. Lang and G. Petekidis for their discussion on interlaboratory evaluation of methods for evaluating slip and confinement within MS22 of WP8.

Funding

The authors gratefully received financial support from FWO (Research Foundation Flanders, FWO project G.0543.10N and G.0364.08) and from the European Commission under the Seventh Framework Program by means of the grant agreement for the Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure (ESMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Clasen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vleminckx, G., Jofore, B.D., Moldenaers, P. et al. Effect of geometrical confinement on the flow of soft microgel particle pastes. Rheol Acta 59, 435–453 (2020). https://doi.org/10.1007/s00397-020-01209-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-020-01209-5

Keywords

Navigation