Skip to main content
Log in

Lactobacillus species inhibitory effect on colorectal cancer progression through modulating the Wnt/β-catenin signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Probiotic bacteria are known to exert a wide range of anticancer activities on their animal hosts. In the present study, the anticancer effect of a cocktail of several potential probiotic Lactobacillus species (potential probiotic L.C) was investigated in vitro and in vivo. MTT and Flow cytometry tests results showed that administration of live potential probiotic L.C significantly decreased the HT-29 and CT-26 cells proliferation and induced late apoptotis in a time-dependent manner. In addition, quantitative real-time polymerase chain reaction (qPCR) results showed that exposure of potential probiotic L.C to both HT-29 and CT-26 cells during the incubation times resulted in the upregulation (apc and CSNK1ε for HT-29, CSNK1ε and gsk3β for CT-26) and downregulation (CTNNB1, CCND1, pygo2, axin2 and id2) of the Wnt/β- catenin pathway-related genes in a time-dependent manner. The significance of in vitro anticancer effect of potential probiotic L.C was further confirmed in an experimental tumor model. Data from the murine model of colorectal cancer (CRC) induced by Azoxymethane (AOM) and Dextran Sulfate Sodium (DSS) showed significantly alleviated inflammation and tumor development in AOM/DSS/L.C-injected mice compared to the AOM/DSS-injected mice. Tumor growth inhibition was accompanied by potential probiotic L.C-driven upregulation and downregulation of the Wnt/β-catenin pathway-related genes, similar to the in vitro results. These results showed that potential probiotic L.C inhibited the tumor growth, and that its anticancer activity was at least partially mediated through suppressing the Wnt/β-catenin pathway. Overall, the present study suggested that this probiotic could be used clinically as a supplement for CRC prevention and treatment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are presented within the manuscript. Supplementary file and additional information are available from the corresponding author on reasonable request.

References

  1. Aran V et al (2016) Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer 15(3):195–203

    Article  PubMed  Google Scholar 

  2. Qi J et al (2016) New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals. Gut 65(10):1690–1701

    Article  CAS  PubMed  Google Scholar 

  3. Tarapore RS, Siddiqui IA, Mukhtar H (2011) Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis 33(3):483–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stamos JL, Weis WI (2013) The β-catenin destruction complex. Cold Spring Harbor Perspect Biol 5(1):a007898

    Article  CAS  Google Scholar 

  5. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461

    Article  CAS  PubMed  Google Scholar 

  6. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  Google Scholar 

  7. Carrera I et al (2008) Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc Natl Acad Sci USA 105(18):6644–6649

    Article  PubMed  Google Scholar 

  8. De la Roche M, Worm J, Bienz M (2008) The function of BCL9 in Wnt/β-catenin signaling and colorectal cancer cells. BMC Cancer 8(1):199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shang S, Hua F, Hu Z-W (2017) The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8(20):33972

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rautava S, Walker WA (2007) Commensal bacteria and epithelial cross talk in the developing intestine. Curr Gastroenterol Rep 9(5):385–392

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lin C et al (2019) Role of gut microbiota in the development and treatment of colorectal cancer. Digestion 100(1):62–68

    Article  Google Scholar 

  13. Rowland IR (2009) The role of the gastrointestinal microbiota in colorectal cancer. Curr Pharm Des 15(13):1524–1527

    Article  CAS  PubMed  Google Scholar 

  14. Prakash S et al (2011) Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics 5:71

    PubMed  PubMed Central  Google Scholar 

  15. Saez-Lara MJ et al (2015) The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. BioMed Res Int. https://doi.org/10.1155/2015/505878

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dubey V, Ghosh AR (2013) Probiotics cross talk with multi cell signaling in colon carcinogenesis. J Probiot Health 1(109):2–5

    Google Scholar 

  17. Kahouli I, Tomaro-Duchesneau C, Prakash S (2013) Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives. J Med Microbiol 62(8):1107–1123

    Article  CAS  PubMed  Google Scholar 

  18. Lee HA et al (2015) Dead nano-sized Lactobacillus plantarum inhibits azoxymethane/dextran sulfate sodium-induced colon cancer in Balb/c mice. J Med Food 18(12):1400–1405

    Article  CAS  PubMed  Google Scholar 

  19. Chang J-H et al (2012) Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. J Med Microbiol 61(3):361–368

    Article  CAS  PubMed  Google Scholar 

  20. Zhu J et al (2014) Lactobacillus salivarius R en prevent the early colorectal carcinogenesis in 1, 2-dimethylhydrazine-induced rat model. J Appl Microbiol 117(1):208–216

    Article  CAS  PubMed  Google Scholar 

  21. Rohani M et al (2015) Highly heterogeneous probiotic Lactobacillus species in healthy iranians with low functional activities. PLoS ONE 10(12):e0144467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bibalan MH et al (2017) Isolates of Lactobacillus plantarum and L. reuteri display greater antiproliferative and antipathogenic activity than other Lactobacillus isolates. J Med Microbiol 66(10):1416–1420

    Article  CAS  Google Scholar 

  23. Rohani M et al (2015) Highly heterogeneous probiotic Lactobacillus species in healthy iranians with low functional activities. PLoS ONE 10(12):e014467

    Article  CAS  Google Scholar 

  24. Lizarbe M et al (2013) Annexin-phospholipid interactions. Functional implications. Int J Mol Sci 14(2):2652–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cummings BS, Schnellmann RG (2004) Measurement of cell death in mammalian cells. Curr Protoc Pharmacol 25(1):1–22

    Article  Google Scholar 

  26. Zackular JP et al (2013) The gut microbiome modulates colon tumorigenesis. MBio 4(6):e00692–e713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu J et al (2015) Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. J Biosci 40(2):269–279

    Article  CAS  PubMed  Google Scholar 

  28. Pedersen R. Analyzing gels and Western blots with ImageJ.

  29. Dolatkhah R et al (2015) Colorectal cancer in Iran: molecular epidemiology and screening strategies. J Cancer Epidemiol. https://doi.org/10.1155/2015/643020

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhu Y et al (2011) Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett 309(2):119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drago L (2019) Probiotics and Colon Cancer. Microorganisms 7(3):66

    Article  CAS  PubMed Central  Google Scholar 

  32. An J, Ha E-M (2016) Combination therapy of Lactobacillus plantarum supernatant and 5-fluouracil increases chemosensitivity in colorectal cancer cells. J Microbiol Biotechnol 26(8):1490–1503

    Article  CAS  PubMed  Google Scholar 

  33. Taherian-Esfahani Z et al (2016) Lactobacilli differentially modulate mTOR and Wnt/β-catenin pathways in different cancer cell lines. Iran J Cancer Prev 9(3):e5369

    PubMed  PubMed Central  Google Scholar 

  34. Tiptiri-Kourpeti A et al (2016) Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS ONE 11(2):e0147960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baindara P, Korpole S, Grover V (2018) Bacteriocins: perspective for the development of novel anticancer drugs. Appl Microbiol Biotechnol 102(24):10393–10408

    Article  CAS  PubMed  Google Scholar 

  36. Aceto GM et al (2015) Correlation between mutations and mRNA expression of APC and MUTYH genes: new insight into hereditary colorectal polyposis predisposition. J Exp Clin Cancer Res 34(1):131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Knippschild U et al (2014) The CK1 family: contribution to cellular stress response and its role in carcinogenesis. Front Oncol 4:96

    Article  PubMed  PubMed Central  Google Scholar 

  38. McCubrey JA et al (2014) GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 5(10):2881

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jho E-H et al (2002) Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22(4):1172–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Richter J et al (2015) Effects of altered expression and activity levels of CK1δ and ɛ on tumor growth and survival of colorectal cancer patients. Int J Cancer 136(12):2799–2810

    Article  CAS  PubMed  Google Scholar 

  41. Talla SB, Brembeck FH (2016) The role of Pygo2 for Wnt/ß-catenin signaling activity during intestinal tumor initiation and progression. Oncotarget 7(49):80612

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hummel S et al (2012) Differential targeting of the E-cadherin/β-catenin complex by Gram-positive probiotic lactobacilli improves epithelial barrier function. Appl Environ Microbiol 78(4):1140–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Taranu I et al (2018) In vitro transcriptome response to a mixture of lactobacilli strains in intestinal porcine epithelial cell line. Int J Mol Sci 19(7):1923

    Article  CAS  PubMed Central  Google Scholar 

  44. Kumar A et al (2007) Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J 26(21):4457–4466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35(2):229–244

    Article  CAS  PubMed  Google Scholar 

  46. Maltzman T et al (1997) AOM-induced mouse colon tumors do not express full-length APC protein. Carcinogenesis 18(12):2435–2439

    Article  CAS  PubMed  Google Scholar 

  47. Chen J, Huang X-F (2009) The signal pathways in azoxymethane-induced colon cancer and preventive implications. Cancer Biol Ther 8(14):1313–1317

    Article  CAS  PubMed  Google Scholar 

  48. Ambalam P et al (2016) Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol 30(1):119–131

    Article  PubMed  Google Scholar 

  49. Clarke JM et al (2011) Butyrate delivered by butyrylated starch increases distal colonic epithelial apoptosis in carcinogen-treated rats. Carcinogenesis 33(1):197–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Arash Arashkia, Dr. Mina Bahrololumi, and Mr. Mohammad Sadegh Shams for their excellent technical assistance. This study was supported by Iran University of Medical Science, Tehran, Iran. This work was supported by Iran University of Medical Science, Tehran, Iran (Grant Number 30464).

Author information

Authors and Affiliations

Authors

Contributions

MT and MR conceived, designed, and supervised the study; RGH performed the experiments, analyzed the data, and provided the manuscript, FM and PA helped in carrying out the experiments. AA supervised the findings. AJ helped in pathological examination of tissues. All authors reviewed and contributed to revisions and finalized the drafts.

Corresponding authors

Correspondence to Malihe Talebi or Mahdi Rohani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanavati, R., Akbari, A., Mohammadi, F. et al. Lactobacillus species inhibitory effect on colorectal cancer progression through modulating the Wnt/β-catenin signaling pathway. Mol Cell Biochem 470, 1–13 (2020). https://doi.org/10.1007/s11010-020-03740-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03740-8

Keywords

Navigation