Skip to main content
Log in

A Soergel-like category for complex reflection groups of rank one

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce analogues of Soergel bimodules for complex reflection groups of rank one. We give an explicit parametrization of the indecomposable objects of the resulting category and give a presentation of its split Grothendieck ring by generators and relations. This ring turns out to be an extension of the Hecke algebra of the reflection group W and a free module of rank \(|W| (|W|-1)+1\) over the base ring. We also show that it is a generically semisimple algebra if defined over the complex numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnafé, C., Rouquier, R.: An asymptotic cell category for cyclic groups (2017). arXiv:1708.09730

  2. Bourbaki, N.: Groupes et algèbres de Lie, chapitres 4,5 et 6. Hermann (1968)

  3. Broué, M., Malle, G., Rouquier, R.: Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math. 500, 127–190 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Broué, M., Malle, G., Michel, J.: Towards spetses. I. Transf. Groups 4(2–3), 157–218 (1999)

    Article  MathSciNet  Google Scholar 

  5. Elias, B., Williamson, G.: The Hodge theory of Soergel bimodules. Ann. Math. 180, 1089–1136 (2014)

    Article  MathSciNet  Google Scholar 

  6. Erdmann, K., Green, E.L., Snashall, N., Taillefer, R.: Representation theory of the Drinfeld doubles of a family of Hopf algebras. J. Pure Appl. Algebra 204(2), 413–454 (2006)

    Article  MathSciNet  Google Scholar 

  7. Erdmann, K., Green, E.L., Snashall, N., Taillefer, R.: Stable Green ring of the Drinfeld doubles of the generalised Taft algebras (corrections and new results) (2016). arXiv:1609.03831

  8. Gobet, T., Thiel, A.-L.: On generalized categories of Soergel bimodules in type \(A_2\). C. R. Ac. Sci. Paris, Ser. I 356, 258–263 (2018)

    Article  Google Scholar 

  9. Humphreys, J.: Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  10. Jensen, L.T.: The 2-braid group and Garside normal form. Math. Z. 286(1–2), 491–520 (2017)

    Article  MathSciNet  Google Scholar 

  11. Kazhdan, D., Lusztig, G.: Representations of coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

    Article  MathSciNet  Google Scholar 

  12. Kazhdan, D., Lusztig, G.: Schubert varieties and Poincaré duality. Geometry of the Laplace operator. In: Proceedings of Symposia in Pure Mathematics, XXXVI. American Mathematical Society, Providence, RI, pp. 185-203 (1980)

  13. Khovanov, M., Seidel, P.: Quivers, Floer cohomology, and braid group actions. J. Am. Math. Soc. 15(1), 203–271 (2002)

    Article  MathSciNet  Google Scholar 

  14. Lacabanne, A.: Slightly degenerate categories and \(\mathbb{Z}\)–modular data (2018). arXiv:1807.00766

  15. Lacabanne, A.: Drinfeld double of quantum groups, tilting modules and \(\mathbb{Z}\)–modular data associated to complex reflection groups (2018). arXiv:1807.00770

  16. Marin, I.: The freeness conjecture for Hecke algebras of complex reflection groups, and the case of the Hessian group \(G_{26}\). J. Pure Appl. Algebra 218(4), 704–720 (2014)

    Article  MathSciNet  Google Scholar 

  17. Rouquier, R.: Categorification of braid groups (2004). arXiv:math/0409593

  18. Rouquier, R.: Categorification of \(\mathfrak{sl}_2\) and braid groups. In: Trends in Representation Theory of Algebras and Related Topics, Contemporary Mathematics, vol. 406. American Mathematical Society, Providence, RI, pp. 137-167 (2006)

  19. Soergel, W.: Kategorie \(\cal{O}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3(2), 421–445 (1990)

    MATH  Google Scholar 

  20. Soergel, W.: The combinatorics of Harish–Chandra bimodules. J. Reine Angew. Math. 429, 49–74 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Soergel, W.: Kazhdan–Lusztig polynomials and indecomposable bimodules over polynomial rings. J. Inst. Math. Jussieu 6, 501–525 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Pierre-Emmanuel Chaput, Eirini Chavli, Anthony Henderson, Ivan Marin and Ulrich Thiel for useful discussions. We acknowledge the support of Universität Stuttgart during the early stages of this project. We are grateful to the anonymous referee for the careful reading and the insightful suggestions. The first author was funded by an ARC Grant (Grant number DP170101579). The second author was funded by the Grant RIN–ARTIQ of the Région Normandie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gobet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobet, T., Thiel, AL. A Soergel-like category for complex reflection groups of rank one. Math. Z. 295, 643–665 (2020). https://doi.org/10.1007/s00209-019-02358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02358-x

Navigation