Skip to main content
Log in

Quaternionic loci in Siegel’s modular threefold

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(\mathcal {Q}_D\) be the set of moduli points on Siegel’s modular threefold whose corresponding principally polarized abelian surfaces have quaternionic multiplication by a maximal order \(\mathcal {O}\) in an indefinite quaternion algebra of discriminant D over \(\mathbb {Q}\) such that the Rosati involution coincides with a positive involution of the form \(\alpha \mapsto \mu ^{-1}\overline{\alpha }\mu \) on \(\mathcal {O}\) for some \(\mu \in \mathcal {O}\) with \(\mu ^2+D=0\). In this paper, we first give a formula for the number of irreducible components in \(\mathcal {Q}_D\), strengthening an earlier result of Rotger. Then for each irreducible component of genus 0, we determine its rational parameterization in terms of a Hauptmodul of the associated Shimura curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baba, S., Granath, H.: Genus 2 curves with quaternionic multiplication. Can. J. Math. 60(4), 734–757 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bolza, O.: On binary sextics with linear transformations into themselves. Am. J. Math. 10(1), 47–70 (1887)

    MathSciNet  MATH  Google Scholar 

  3. Bonfanti, M.A., van Geemen, B.: Abelian surfaces with an automorphism and quaternionic multiplication. Can. J. Math. 68(1), 24–43 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Borcherds, R.E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Borcherds, R.E.: Reflection groups of Lorentzian lattices. Duke Math. J. 104(2), 319–366 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Bruinier, J.H.: Borcherds products on O(2, \(l\)) and Chern classes of Heegner divisors. Lecture Notes in Mathematics, vol. 1780. Springer, Berlin (2002)

    MATH  Google Scholar 

  7. Cardona, G.: \({\mathbb{Q}}\)-curves and abelian varieties of \(\rm GL_2\)-type from dihedral genus 2 curves. In: Modular Curves and Abelian Varieties, vol. 224 of Progr. Math., pp. 45–52. Birkhäuser, Basel (2004)

  8. Cardona, G., Quer, J.: Curves of genus 2 with group of automorphisms isomorphic to \(D_8\) or \(D_{12}\). Trans. Am. Math. Soc. 359(6), 2831–2849 (2007)

    MATH  Google Scholar 

  9. Cox, D.A.: Primes of the form \(x^2 + ny^2\). A Wiley-Interscience Publication, Wiley, New York (1989) (Fermat, class field theory and complex multiplication)

  10. Elkies, N., Kumar, A.: K3 surfaces and equations for Hilbert modular surfaces. Algebra Number Theory 8(10), 2297–2411 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Errthum, E.: Singular moduli of Shimura curves. Can. J. Math. 63(4), 826–861 (2011)

    MathSciNet  MATH  Google Scholar 

  12. González, J., Guàrdia, J.: Genus two curves with quaternionic multiplication and modular Jacobian. Math. Comput. 78(265), 575–589 (2009)

    MathSciNet  MATH  Google Scholar 

  13. González, J., Molina, S.: The kernel of Ribet’s isogeny for genus three Shimura curves. J. Math. Soc. Jpn. 68(2), 609–635 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Goren, E.Z., Lauter, K.E.: Class invariants for quartic CM fields. Ann. Inst. Fourier (Grenoble) 57(2), 457–480 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Guo, J.-W., Yang, Y.: Equations of hyperelliptic Shimura curves. Compos. Math. 153(1), 1–40 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Hashimoto, K.: Explicit form of quaternion modular embeddings. Osaka J. Math. 32, 533–546 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Hashimoto, K., Murabayashi, N.: Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves of genus two. Tohoku Math. J. 47(2), 271–296 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Igusa, J.: Arithmetic variety of moduli for genus two. Ann. Math. 2(72), 612–649 (1960)

    MathSciNet  MATH  Google Scholar 

  19. Igusa, J.: On Siegel modular forms of genus two. Am. J. Math. 84, 175–200 (1962)

    MathSciNet  MATH  Google Scholar 

  20. Igusa, J.: Modular forms and projective invariants. Am. J. Math. 89, 817–855 (1967)

    MathSciNet  MATH  Google Scholar 

  21. Kudla, S.S.: Integrals of Borcherds forms. Compos. Math. 137(3), 293–349 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Lang, S.: Introduction to algebraic and Abelian functions, vol. 89 of Graduate Texts in Mathematics, 2nd edn. Springer, New York, Berlin (1982)

  23. Mestre, J.F.: Construction de courbes de genre \(2\) à partir de leurs modules. In: Effective methods in Algebraic Geometry (Castiglioncello, 1990), vol. 94 of Progr. Math., pp. 313–334. Birkhäuser, Boston (1991)

  24. Mumford, D.: Abelian varieties. In: Tata Institute of Fundamental Research Studies in Mathematics, vol. 5. Published for the Tata Institute of Fundamental Research, Bombay. Hindustan Book Agency, New Delhi (2008) [With appendices by C.P. Ramanujam and Yuri Manin. Corrected reprint of the second (1974) edition]

  25. Nelson, P.D.: Evaluating modular forms on Shimura curves. Math. Comput. 84(295), 2471–2503 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Ogg, A.P.: Real points on Shimura curves. In: Arithmetic and Geometry, vol. I, volume 35 of Progr. Math., pp. 277–307. Birkhäuser, Boston (1983)

  27. Pollak, B.: The equation \(\bar{tat}=b\) in a composition algebra. Duke Math. J. 29, 225–230 (1962)

    MathSciNet  MATH  Google Scholar 

  28. Rotger, V.: Abelian varieties with quaternionic multiplication and their moduli. Thesis (Ph.D.)–Universitat de Barcelona (2002)

  29. Rotger, V.: Quaternions, polarization and class numbers. J. Reine Angew. Math. 561, 177–197 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Rotger, V.: Modular Shimura varieties and forgetful maps. Trans. Am. Math. Soc. 356(4), 1535–1550 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Rotger, V.: Shimura curves embedded in Igusa’s threefold. In: Modular Curves and Abelian Varieties, vol. 224 of Progr. Math., pp. 263–276. Birkhäuser, Basel (2004)

  32. Runge, B.: Endomorphism rings of abelian surfaces and projective models of their moduli spaces. Tohoku Math. J. 51(3), 283–303 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Schofer, J.: Borcherds forms and generalizations of singular moduli. J. Reine Angew. Math. 629, 1–36 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Shimizu, H.: Theta series and automorphic forms on \({\rm GL}_{2}\). J. Math. Soc. Jpn. 24, 638–683 (1972)

    MATH  Google Scholar 

  35. Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. Math. 2(85), 58–159 (1967)

    MathSciNet  MATH  Google Scholar 

  36. Vignéras, M.F.: Arithmétique des algèbres de quaternions, vol. 800 of Lecture Notes in Mathematics. Springer, Berlin (1980)

  37. Watson, T.C.: Rankin triple products and quantum chaos. ProQuest LLC, Ann Arbor, MI (2002) [Thesis (Ph.D.)–Princeton University]

  38. Yang, Y.: Special values of hypergeometric functions and periods of CM elliptic curves. Trans. Am. Math. Soc. 370(9), 6433–6467 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yi-Hsuan Lin and Yifan Yang would like to thank the referee for thorough reading the manuscript and providing valuable comments that improve the exposition of the paper substantially. Yi-Hsuan Lin and Yifan Yang were partially supported by Grant 106-2115-M-002-009-MY3 of the Ministry of Science and Technology, Taiwan (R.O.C.).

Appendices

Appendix A: List of Shimura curves and their quadratic forms

Here we list all Shimura curves of discriminant \(<100\) and Shimura curves of genus zero and discriminant \(>100\) on \(\mathscr {A}_2\), characterized by their quadratic forms. Here D is the discriminant of the quaternion algebra, k is the numbering of the curves, W is the stable group of the Shimura curve, as defined in Definition 11, and g is the genus of the Shimura curve. We let [abc] represent the quadratic form \(ax^2+bxy+cy^2\). The quadratic forms are enumerated first in the ascending order of b and then in the ascending order of a.

Appendix B: Modular parameterizations of Shimura curves

Let \(s_k\), \(k=2,3,5,6\), be the Siegel modular forms defined in (14). In this appendix, we give modular parameterizations for Shimura curves of genus zero on \(\mathscr {A}_2\). Here we only list Shimura curves of discriminant D up to 50 and refer the reader to the arXiv version of the paper for a complete list.

Our choices of Hauptmoduls for \(X_0^D(1)/W_D\) and \(X_0^D(1)/w_D\) are given in 2 and 3, respectively. Note that the description of Hauptmoduls is given by specifying the values of the Hauptmodul at three certain CM-points \(z_{d_1}\), \(z_{d_2}\), and \(z_{d_3}\). In the case of \(X_0^D(1)/W_D\), this uniquely determines the Hauptmodul since for each \(d_i\), there is only one CM-point of discriminant \(d_i\). In the case of \(X_0^D(1)/w_D\), we have two different CM-points of discriminant \(d_3\). Thus, there are two possible choices of Hauptmoduls, related by the Atkin–Lehner involution \(w_q\), q|D. In the table, we also describe their relations (Tables 1, 2, 3).

\(\mathfrak {X}_{6}^1\)\(\quad [ 5, 2, 5 ]\)

   \(s_2\)

j

   \(s_3\)

\(j^2\)

   \(s_5\)

\(j^3\)

   \(s_6\)

\(j^3(j+1)\)

\(\mathfrak {X}_{10}^1\)\(\quad [ 5, 0, 8 ]\)

   \(s_2\)

\(5^2(j-1)^2\)

   \(s_3\)

\(2^1(j-1)^2(49j+5)\)

   \(s_5\)

\(2^23^5(j-1)^4\)

   \(s_6\)

\(3^5(j-1)^4(3j^2+10j+35)\)

\(\mathfrak {X}_{14}^1\)\(\quad [ 5, 4, 12 ]\)

   \(s_2\)

\((3j+5)^2\)

   \(s_3\)

\(7^1(27j^2+36j+14)\)

   \(s_5\)

\(3^5(j-1)^2j^2\)

   \(s_6\)

\(3^5(3j^6-6j^5+4j^4+4j^3+j^2-6j+3)\)

\(\mathfrak {X}_{15}^1\)\(\quad [ 5, 0, 12 ]\)

   \(s_2\)

\(5^2\)

   \(s_3\)

\(4j^2+64j+121\)

   \(s_5\)

\(2^6(j-1)^2j\)

   \(s_6\)

\(2^4(j^4+72j^3+174j^2+8j+1)\)

\(\mathfrak {X}_{15}^2\)\(\quad [ 8, 4, 8 ]\)

   \(s_2\)

\(5^1(4j+1)\)

   \(s_3\)

\(4j^2+190j-5\)

   \(s_5\)

\(2^4(j-1)^2(j+3)\)

   \(s_6\)

\(2^4(j^4+15j^3+105j^2+125j+10)\)

\(\mathfrak {X}_{21}^1\)\(\quad [ 5, 2, 17 ]\)

   \(s_2\)

\((5j^2-16j-5)^2\)

   \(s_3\)

\(7^1(j-1)(j+1)(27j^4-144j^3+394j^2-624j+603)\)

   \(s_5\)

\(2^{12}(j-1)(j+1)(j+3)^2(j^2-5)^2\)

   \(s_6\)

\(2^{12}(j^{12}+6j^{11}-9j^{10}-108j^9-28j^8+708j^7+406j^6-2016j^5+17j^4+3846j^3-2637j^2 -2436j+6346)\)

\(\mathfrak {X}_{22}^1\)\(\quad [ 8, 8, 13 ]\)

   \(s_2\)

\((j-1)^2(9j+64)\)

   \(s_3\)

\((j-1)^2(351j^2-782j+539)\)

   \(s_5\)

\(3^5(j-1)^4j(j+1)^2\)

   \(s_6\)

\(3^5(j-1)^4(3j^5+5j^4+23j^3+10j^2+4j+3)\)

\(\mathfrak {X}_{26}^1\)\(\quad [ 8, 0, 13 ]\)

   \(s_2\)

\(25j^2-306j+1305\)

   \(s_3\)

\(2^1(49j^3+27j^2-5913j+23085)\)

   \(s_5\)

\(2^23^5(j-1)^2(j+3)^2\)

   \(s_6\)

\(3^5(3j^6-2j^5+13j^4-92j^3+2733j^2+7038j+2595)\)

\(\mathfrak {X}_{26}^2\)\(\quad [ 5, 2, 21 ]\)

   \(s_2\)

\((5j^2+12j+15)^2\)

   \(s_3\)

\(2^1(7j^2+12j+9)(7j^4+60j^3+144j^2+108j+297)\)

   \(s_5\)

\(2^23^5(j-3)^2(j-1)^2(j^2-5)^2\)

   \(s_6\)

\(3^5(3j^{12}-24j^{11}+22j^{10}+280j^9-651j^8-880j^7+3348j^6-848j^5-2819j^4+3336j^3+2166j^2-34632j+42987)\)

\(\mathfrak {X}_{33}^1\)\(\quad [ 8, 4, 17 ]\)

   \(s_2\)

\(288j^6-360j^5-295j^4+240j^3+238j^2+120j+25\)

   \(s_3\)

\((j-1)(j+1)(324j^8-4536j^7+9216j^6+4284j^5+3373j^4+4704j^3+3350j^2+924j+121)\)

   \(s_5\)

\(2^6(j-1)j^2(j+1)(3j-1)^2(3j^2+1)^2(3j^3+7j^2-3j+1)^2\)

   \(s_6\)

\(2^4(6561j^{20}+26244j^{19}+275562j^{18}+26244j^{17}+279693j^{16}+863136j^{15}-190440j^{14}-779904j^{13}+700018j^{12}-123384j^{11}-72484j^{10}+20328j^9+35570j^8-28416j^7+12888j^6-3936j^5+1133j^4-300j^3+74j^2-12j+1)\)

\(\mathfrak {X}_{34}^1\)\(\quad [ 5, 4, 28 ]\)

   \(s_2\)

\(j^2(11j^2-20j+1)^2\)

   \(s_3\)

\(j^2(27j^8-926j^7+9096j^6-10998j^5+8186j^4-4122j^3+1032j^2-82j+27)\)

   \(s_5\)

\(3^5j^4(j+1)^2(j+3)^2(j^2+2j-1)^2(j^2+4j-1)^2\)

   \(s_6\)

\(3^5j^4(3j^{16}+68j^{15}+683j^{14}+3836j^{13}+12666j^{12}+23708j^{11}+21565j^{10}+6724j^9+8838j^8+13276j^7-12811j^6-9628j^5+13338j^4-5180j^3+771j^2-36j+3)\)

\(\mathfrak {X}_{35}^1\)\(\quad [ 5, 0, 28 ]\)

   \(s_2\)

\(5^2(3j^2+10j+51)^2\)

   \(s_3\)

\(7^1(27j^2+178j+243)(27j^4-36j^3-502j^2-1044j+9747)\)

   \(s_5\)

\(2^{14}3^5(j-1)^2j(j^3+13j^2+51j-1)^2\)

   \(s_6\)

\(2^{12}3^5(3j^{12}+96j^{11}+2014j^{10}+35808j^9+389869j^8+2509312j^7+9837156j^6+21020288j^5+17081069j^4-730208j^3+186334j^2-96j+3)\)

\(\mathfrak {X}_{35}^2\)\(\quad [ 12, 4, 12]\)

   \(s_2\)

\(5^1(45j^4+876j^3-2002j^2-3924j+909)\)

   \(s_3\)

\(7^1(729j^6-9126j^5+34119j^4+490604j^3+124119j^2+642330j+27945)\)

   \(s_5\)

\(2^{12}3^5(j+3)^2(j+7)(j^3+13j^2+51j-1)^2\)

   \(s_6\)

\(2^{12}3^5(3j^{12}+141j^{11}+3019j^{10}+39267j^9+339240j^8+1967522j^7+7421414j^6+16970566j^5+20814403j^4+14639425j^3+19460895j^2+2222055j+8130)\)

\(\mathfrak {X}_{35}^3\)\(\quad [ 12, 8, 13]\)

   \(s_2\)

\(5^1(45j^8+288j^7+1356j^6+1824j^5+5390j^4+1632j^3+13644j^2-3744j+45)\)

   \(s_3\)

\(7^1(729j^{12}+3888j^{11}+18090j^{10}+79056j^9+277623j^8+649440j^7+1230476j^6+819360j^5+1037367j^4-1563408j^3+1089450j^2+11664j+16281)\)

   \(s_5\)

\(2^{12}3^5(j-1)^2(j+1)^2(j^2-2j+5)^2(j^2+3)^2(j^3-j^2+7j+1)^2\)

   \(s_6\)

\(2^{12}3^5(3j^{24}-18j^{23}+147j^{22}-576j^{21}+2635j^{20}-7266j^{19}+23897j^{18}-48084j^{17}+132420j^{16}-194660j^{15}+536174j^{14}-563952j^{13}+1917622j^{12}-1570836j^{11}+6456226j^{10}-4274680j^9+15283435j^8-4052682j^7+16219183j^6+6354768j^5+7786095j^4+4437942j^3+1954773j^2-79956j+19038)\)

\(\mathfrak {X}_{38}^1\)\(\quad [ 12, 4, 13]\)

   \(s_2\)

\(9j^6-60j^5+346j^4-240j^3+153j^2-180j+36\)

   \(s_3\)

\(675j^8-2016j^7+2600j^6-8064j^5+11610j^4-6048j^3+3240j^2+243\)

   \(s_5\)

\(3^5(j+1)^2(j^2+1)^2(j^2+3)^2(j^2+j+2)^2\)

   \(s_6\)

\(3^5(3j^{18}+12j^{17}+61j^{16}+160j^{15}+525j^{14}+1068j^{13}+2612j^{12}+4032j^{11}+7533j^{10}+8548j^9+12532j^8+9984j^7+11971j^6+6180j^5+6792j^4+2208j^3+2592j^2+576j+435)\)

\(\mathfrak {X}_{38}^2\)\(\quad [ 8, 8, 21 ]\)

   \(s_2\)

\(9j^3+46j^2+393j+576\)

   \(s_3\)

\(81j^4-836j^3-6822j^2-13068j-13851\)

   \(s_5\)

\(-3^5(j-1)^2j(j+1)^2(3j+1)^2\)

   \(s_6\)

\(3^5(3j^9+153j^8+1077j^7+2848j^6+4149j^5+2872j^4+987j^3+172j^2+24j+3)\)

\(\mathfrak {X}_{39}^1\)\(\quad [ 5, 4, 32 ]\)

   \(s_2\)

\((5j^4+4j^3-10j^2+4j+5)^2\)

   \(s_3\)

\(189j^{12}-180j^{11}+514j^{10}-708j^9-45j^8+24j^7-68j^6+2328j^5-45j^4-2148j^3-158j^2+684j+189\)

   \(s_5\)

\(2^{10}(j-2)^2j^2(j^2-2j-1)^2(j^2-j-1)^2(j^3-j^2-2j-1)^2\)

   \(s_6\)

\(2^{10}(4j^{24}-60j^{23}+363j^{22}-1056j^{21}+1088j^{20}+1680j^{19}-4884j^{18}+210j^{17}+8824j^{16}-3396j^{15}-10122j^{14}+3522j^{13}+8843j^{12}-348j^{11}-5640j^{10}-2082j^9+2134j^8+1632j^7\)

 

\(-537j^6-642j^5+275j^4+492j^3+228j^2+48j+4)\)

\(\mathfrak {X}_{39}^2\)\(\quad [ 8, 4, 20 ]\)

   \(s_2\)

\(25j^8-40j^7-4j^6-200j^5-58j^4+520j^3+556j^2+200j+25\)

   \(s_3\)

\(189j^{12}-684j^{11}-998j^{10}+5340j^9+2139j^8-13752j^7-9308j^6+9384j^5+17931j^4+14148j^3+6562j^2+1692j+189\)

   \(s_5\)

\(2^{10}(j-1)^2j^2(j^2-j-1)^2(j^3-2j^2+j+1)^2(j^4-j^3-j^2+j+1)\)

   \(s_6\)

\(2^{10}(4j^{24}-48j^{23}+243j^{22}-639j^{21}+773j^{20}+219j^{19}-1875j^{18}+1560j^{17}+1642j^{16}-3300j^{15}-255j^{14}+3855j^{13}-1018j^{12}-3420j^{11}+1593j^{10}+2352j^9-1301j^8-1260j^7+639j^6+516j^5-172j^4-147j^3+15j^2+24j+4)\)

Table 1 Modular parameterizations of Shimura curves
Table 2 Choice of Hauptmoduls for \(X_0^D(1)/W_D\)
Table 3 Choice of Hauptmoduls for \(X_0^D(1)/w_D\)
Table 4 Mestre obstruction for \(\mathfrak {X}\)

Appendix C: Mestre obstructions

In [23], Mestre gave an algorithm to generate a hyperelliptic curve of genus 2 with given Igusa invariants \(J=[J_2,J_4,J_6,J_{10}]\). In the process, he considered a certain ternary quadratic form

$$\begin{aligned} L(J)=\sum _{1\le i,j\le 3}A_{ij}(J)x_ix_j, \end{aligned}$$

constructed from J. He showed that if L(J) is degenerate, then there is always a curve C of genus 2 defined over \(\mathbb {Q}(J):=\mathbb {Q}(J_2,J_4,J_6,J_{10})\). In such a case, the curve C has a nontrivial automorphism different from the hyperelliptic involution. (For the case of curves over \(\mathbb {C}\), this means that the Jacobian of C lies on the Humbert surface of discriminant 4. See [2].) Furthermore, he showed that when L(J) is nondegenerate, there is a curve C of genus 2 defined over a field K with Igusa invariants J if and only if L(J) is isotropic over K. In other words, there is a quaternion algebra \(\mathcal {B}\) over \(\mathbb {Q}(J)\) such that there is a curve over K with Igusa invariants J if and only if K splits \(\mathcal {B}\). (In the case when L(J) is diagonal, say, \(L(J)=a_1x_1^2+a_2x_2^2+a_3x_3^2\), \(\mathcal {B}\) is simply \(\left( \frac{-a_1a_3,-a_2a_3}{\mathbb {Q}(J)}\right) \)). In literature, this quaternion algebra \(\mathcal {B}\) is called the Mestre obstruction for J. In the case of the unique Shimura curve \(\mathfrak {X}_6\) of discriminant 6, using the parameterization given in (2), Baba and Granath [1] exhibited a matrix \(M\in M(3,\mathbb {Z}[j])\) such that

Therefore, for a point on \(\mathfrak {X}_6\) that is not on \(H_4\), the Mestre obstruction is \(\left( \frac{-6j,-2(27j+16)}{\mathbb {Q}(j)}\right) \). For the case of \(D=10\), Baba and Granath [1] found that the Mestre obstruction is \(\left( \frac{-10j,-5(2j+25)}{\mathbb {Q}(j)}\right) \). (Note that their choice of Hauptmodul is different from ours.) In this section, we conduct a similar computation and determine Mestre obstructions for Shimura curves of genus 0 and discriminant less than 50 (80 in the arXiv version). The results are given in Table 4.

Remark 44

Note that when \(X_0^D(1)/w_D\) has genus 0 and j is a Hauptmodul for \(X_0^D(1)/w_D\), a canonical model for \(X_0^D(1)\) has the form \(y^2=f(x)\), where the roots of f(x) are the values of j at the fixed points of the Atkin-Lehner involution \(w_D\). Our computation shows that in all cases where the Shimura curve \(\mathfrak {X}\) is isomorphic to \(X_0^D(1)/w_D\), the Mestre obstruction for \(\mathfrak {X}\) is given by

$$\begin{aligned} \left( \frac{-D,mf(j)}{\mathbb {Q}(j)}\right) , \end{aligned}$$

where m is an integer such that \(r^2m\) is representable by the quadratic form associated to \(\mathfrak {X}\) for some rational number r. For instance, the quadratic form for \(\mathfrak {X}_{51}^2\) is \(5x^2+2xy+41y^2\), which clearly represents 5. Also, a canoncal model for \(X_0^{51}(1)\) is \(y^2=f(x)\), where \(f(x)=-(x^2+3)(243x^6+235x^4-31x^2+1)\) (see [13, 15]). Our computation shows that the Mestre obstruction for \(\mathfrak {X}_{51}^2\) is \(\left( \frac{-51,5f(j)}{\mathbb {Q}(j)}\right) \). If this phenomenon holds in general, there should be a deep arithmetic meaning.

Note also that it is well-known that the Shimura curve \(X_0^D(1)\) has no real points when \(D>1\) (see [26]). In other words, the polynomial f(x) above is negative for any real x. It follows that the quaternion algebra \(\left( \frac{-D,mp(j)}{\mathbb {Q}}\right) \) always ramifies at the infinite place whenever \(j\in \mathbb {R}\). Therefore, we have the following proposition.

Proposition 45

Let \(\mathfrak {X}\) be a Shimura curve in Table 4 that is isomorphic to \(X_0^D(1)/w_D\). (I.e., the quadratic form associated to \(\mathfrak {X}\) is not ambiguous.) Then there are only a finite number of isomorphism classes of genus 2 curves over \(\mathbb {R}\) such that their Jacobians lie on \(\mathfrak {X}\). To be more precise, these exceptional moduli points are the real points that lie on the intersection of \(\mathfrak {X}\) and \(H_4\), but not on \(H_1\).

Example 46

Consider \(\mathfrak {X}=\mathfrak {X}_{14}^1\). Using (15) and the modular parameterization in Appendix B, we find that the only real points lying on \(\mathfrak {X}\cap H_4\) have j-values \(j=\infty \),0,\(\pm 1\),5 / 9,\(\pm \sqrt{5}\). Among these points, the points corresponding to \(j=\infty ,0,1\) also lie on \(H_1\). Thus, there are precisely four genus 2 curves over \(\mathbb {R}\) whose Jacobians belong to \(\mathfrak {X}\), two of them defined over \(\mathbb {Q}\) and the other two defined over \(\mathbb {Q}(\sqrt{5})\). The point with \(j=-1\) is a CM-point of discriminant \(-11\) with

$$\begin{aligned}{}[s_2,s_3,s_5,s_6]=[4,35,972,4617], \end{aligned}$$

or equivalently,

$$\begin{aligned}{}[J_2,J_4,J_6,J_{10}]=[-76, 198, 188, -4096]. \end{aligned}$$

Its ternary quadratic form

represents \(4x^2+4xy+4y^2\). Thus, it also lies on the modular curve \(\mathfrak {Y}_3'\), defined in Sect. 5. Since \(\mathfrak {Y}_3'\) parameterizes curves of genus 2 with an automorphism group containing the dihedral group \(D_6\) of order 12 (see [7, Theorem 2.1]), a curve of genus 2 with these invariants can be obtained using a result of Cardona and Quer [8, Proposition 2.2]. We find that

$$\begin{aligned} y^2=11x^6+11x^3-4 \end{aligned}$$

is a curve with \([s_2,s_3,s_5,s_6]=[4,35,972,4617]\).

The point with \(j=5/9\) is a CM-point of discriminant \(-43\) with

$$\begin{aligned}{}[s_2,s_3,s_5,s_6]=[400/9, 889/3, 400/27, 144001/729] \end{aligned}$$

or equivalently,

$$\begin{aligned} {[}J_2,J_4,J_6,J_{10}]=\left[ -\frac{144001}{10800}, \frac{15552288001}{2799360000}, \frac{46655567999}{544195584000000}, -\frac{25}{419904}\right] . \end{aligned}$$

A curve of genus 2 over \(\mathbb {Q}\) with these invariants is

$$\begin{aligned} y^2=ax^6+bx^5+cx^4+dx^3-43cx^2-43^2bx-43^3a, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} a&=55263257981868963587850953171983151, \\ b&=17933188094622164053062876274057062, \\ c&=2377689006459293602182305511758203269, \\ d&=1274547562528177370745959571323659332. \end{aligned} \end{aligned}$$

An extra involution is given by \((x,y)\mapsto (-43/x,\sqrt{-43^3}y/x^3)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YH., Yang, Y. Quaternionic loci in Siegel’s modular threefold. Math. Z. 295, 775–819 (2020). https://doi.org/10.1007/s00209-019-02372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02372-z

Mathematics Subject Classification

Navigation