Skip to main content
Log in

Online Diagnostic System to Monitor Temperature of In-Flight Particles in Suspension Plasma Spray

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Suspension plasma spray (SPS) is going through a transition phase from research and development to daily use on production lines. Improving repeatability and reproducibility of coating elements and parameters makes SPS a replacement of former well-developed processes. This transition can be achieved by using in-flight particles diagnostic systems to monitor and control key parameters that influence the coating microstructure. Temperature and velocity of the in-flight particles are among the most critical parameters that should be monitored. However, accurately characterizing the in-flight particles in SPS is particularly challenging due to the small particle size of coating materials, harsh spray conditions, considerably shorter spray distances compared to APS, possible interference from the solvent, and limitations of previous measurement systems. In this study, different strategies were investigated to improve the accuracy of temperature measurements of in-flight particles in SPS. For this purpose, two light collection configurations (double-point and single-point measurement) were investigated along with the influence of plasma radiation. The results were evaluated by collecting and studying splats. The size and shape of splats were correlated with the temperature of in-flight particles in order to confirm the accuracy of the sensor’s temperature measurements. In addition, the sensitivity of temperature measurements to the optical filter used for two-color pyrometry, reflection of plasma radiation from surrounding objects, and direct radiation from plasma were investigated. The results showed that the single-point measurement configuration was well adapted for SPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Kassner, R. Siegert, D. Hathiramani, R. Vassen, and D. Stoever, Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, J. Therm. Spray Technol., 2008, 17, p 115-123

    Article  CAS  Google Scholar 

  2. G. Mauer, A. Guignard, R. Vaßen, and D. Stöver, Process Diagnostics in Suspension Plasma Spraying, Surf. Coat. Technol., 2010, 205, p 961-966

    Article  CAS  Google Scholar 

  3. C. Moreau, J. Bisson, R. Lima, and B. Marple, Diagnostics for Advanced Materials Processing by Plasma Spraying, Pure Appl. Chem., 2005, 77, p 443-462

    Article  CAS  Google Scholar 

  4. S. Sampath, V. Srinivasan, A. Valarezo, A. Vaidya, and T. Streibl, Sensing, Control, and In Situ Measurement of Coating Properties: An Integrated Approach Toward Establishing Process-Property Correlations, J. Therm. Spray Technol., 2009, 18, p 243-255

    Article  CAS  Google Scholar 

  5. O.P. Solonenko, Complex Investigation of Thermophysical Processes in Plasma-Jet Spraying, Pure Appl. Chem., 1990, 62, p 1783-1800

    Article  CAS  Google Scholar 

  6. S. Coulombe and M. Boulos, In-Flight Particle Diagnostics in Induction Plasma Processing, Plasma Chem. Plasma Process., 1995, 15, p 653-675

    Article  CAS  Google Scholar 

  7. M. Vardelle, A. Vardelle, P. Fauchais, and M. Boulos, Plasma—Particle Momentum and Heat Transfer: Modelling and MEASUREMENTS, AIChE J., 1983, 29, p 236-243

    Article  CAS  Google Scholar 

  8. J. Fincke, C. Jeffery, and S. Englert, In-Flight Measurement of Particle Size and Temperature, J. Phys. E Sci. Instrum., 1988, 21, p 367

    Article  CAS  Google Scholar 

  9. J.R. Fincke, W.D. Swank, R.L. Bewley, D.C. Haggard, M. Gevelber, and D. Wroblewski, Diagnostics and Control in the Thermal Spray Process, Surf. Coat. Technol., 2001, 146, p 537-543

    Article  Google Scholar 

  10. J. Mishin, M. Vardelle, J. Lesinski, and P. Fauchais, Two-Colour Pyrometer for the Statistical Measurement of the Surface Temperature of Particles Under Thermal Plasma Conditions, J. Phys. E Sci. Instrum., 1987, 20, p 620

    Article  CAS  Google Scholar 

  11. P. Fauchais, G. Montavon, M. Vardelle, and J. Cedelle, Developments in Direct Current Plasma Spraying, Surf. Coat. Technol., 2006, 201, p 1908-1921

    Article  CAS  Google Scholar 

  12. G. Mauer, R. Vaßen, and D. Stöver, Plasma and Particle Temperature Measurements in Thermal Spray: Approaches and Applications, J. Therm. Spray Technol., 2011, 20, p 391-406

    Article  Google Scholar 

  13. G. Mauer, R. Vaßen, S. Zimmermann, T. Biermordt, M. Heinrich, J. Marques, K. Landes, and J. Schein, Investigation and Comparison of In-Flight Particle Velocity During the Plasma-Spray Process as Measured by Laser Doppler Anemometry and DPV-2000, J. Therm. Spray Technol., 2013, 22, p 892-900

    Article  CAS  Google Scholar 

  14. J. Blain, F. Nadeau, L. Pouliot, C. Moreau, P. Gougeon, and L. Leblanc, Integrated Infrared Sensor System for On Line Monitoring of Thermally Sprayed Particles, Surf. Eng., 1997, 13, p 420-424

    Article  CAS  Google Scholar 

  15. P. Gougeon, C. Moreau, V. Lacasse, M. Lamontagne, I. Powell, and A. Bewsher. A New Sensor for on-line Diagnostics of Particles Under Thermal Spraying Conditions. Advanced Processing Techniques, C. Lall and A.J. Neupaver (Eds), International Conference on Powder Metallurgy and Particulate Materials, Toronto, Canada, Metal Powder Industries Federation, APMI, 1994, p 199-210

  16. C. Moreau, P. Gougeon, M. Lamontagne, V. Lacasse, G. Vaudreuil, and P. Cielo. On-Line Control of the Plasma Spraying Process by Monitoring the Temperature, Velocity, and Trajectory of In-Flight Particles, in Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath (Eds.), Proceedings National Thermal Spray Conference, 20-24 June 1994, Boston, Mass., ASM International, 1994, p 431-437

  17. C. Moreau, P. Gougeon, A. Burgess, and D. Ross. Characterization of Particle Flows in an Axial Injection Plasma Torch, Advances in Thermal Spray Science and Technology, C.C. Berndt and S. Sampath (Eds.), Proceedings National Thermal Spray Conference, Houston, Texas, ASM International, 1995, p 141-147

  18. J.F. Bisson, M. Lamontagne, C. Moreau, L. Pouliot, J. Blain, and F. Nadeau. Ensemble In-Flight Particle Diagnostics Under Thermal Spray Conditions, Thermal Spray 2001 New Surfaces for a New Millennium, Proceedings of the International Thermal Spray Conferences, Singapore, ASM International, 28-30 May 2001, p 705-714

  19. A. Killinger, R. Gadow, G. Mauer, A. Guignard, R. Vaßen, and D. Stöver, Review of New Developments in Suspension and Solution Precursor Thermal Spray Processes, J. Therm. Spray Technol., 2011, 20, p 677

    Article  Google Scholar 

  20. G. Mauer, R. Vaßen, and D. Stöver, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16, p 414-424

    Article  CAS  Google Scholar 

  21. J. Vattulainen, E. Hämäläinen, R. Hernberg, P. Vuoristo, and T. Mäntylä, Novel Method for In-Flight Particle Temperature and Velocity Measurements in Plasma Spraying Using a Single CCD Camera, J. Therm. Spray Technol., 2001, 10, p 94-104

    Article  CAS  Google Scholar 

  22. J.E. Craig, R.A. Parker, D.Y. Lee, F. Biancaniello, and S. Ridder, A Two-Wavelength Imaging Pyrometer for Measuring Particle Temperature, Velocity and Size in Thermal Spray Processes, Proceedings of the International Symposium on Advanced Sensors for Metals Processing, Annual Conference of Metallurgists of CIM, Gateway to the 21st Century, Quebec City, PQ, Canada, 22-26 August 1999, p 369-380

  23. S.P. Mates, D. Basak, F.S. Biancaniello, S.D. Ridder, and J. Geist, Calibration of a Two-Color Imaging Pyrometer and Its Use for Particle Measurements in Controlled Air Plasma Spray Experiments, J. Therm. Spray Technol., 2002, 11, p 195-205

    Article  Google Scholar 

  24. D. Wroblewski, G. Reimann, M. Tuttle, D. Radgowski, M. Cannamela, S. Basu, and M. Gevelber, Sensor Issues and Requirements for Developing Real-Time Control for Plasma Spray Deposition, J. Therm. Spray Technol., 2010, 19, p 723-735

    Article  CAS  Google Scholar 

  25. A. McDonald, C. Moreau, and S. Chandra, Use of Thermal Emission Signals to Characterize the Impact of Fully and Partially Molten Plasma-Sprayed Zirconia Particles on Glass Surfaces, Surf. Coat. Technol., 2010, 204, p 2323-2330

    Article  CAS  Google Scholar 

  26. C. Delbos, J. Fazilleau, V. Rat, J. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 2: Zirconia Particle Treatment and Coating Formation, Plasma Chem. Plasma Process., 2006, 26, p 393-414

    Article  CAS  Google Scholar 

  27. Z. Zeng, S. Kuroda, and H. Era, Comparison of Oxidation Behavior of Ni-20Cr Alloy and Ni-Base Self-Fluxing Alloy During Air Plasma Spraying, Surf. Coat. Technol., 2009, 204, p 69-77

    Article  CAS  Google Scholar 

  28. F. Tarasi, M. Medraj, A. Dolatabadi, J.O. Berghaus, and C. Moreau, Amorphous and Crystalline Phase Formation During Suspension Plasma Spraying of the Alumina-Zirconia Composite, J. Eur. Ceram. Soc., 2011, 31, p 2903-2913

    Article  CAS  Google Scholar 

  29. B. Aziz, P. Gougeon, and C. Moreau, Temperature Measurement Challenges and Limitations for In-Flight Particles in Suspension Plasma Spraying, J. Therm. Spray Technol., 2017, 26, p 695-707

    Article  Google Scholar 

  30. R. Vaßen, H. Kaßner, G. Mauer, and D. Stöver, Suspension Plasma Spraying: Process Characteristics and Applications, J. Therm. Spray Technol., 2010, 19, p 219-225

    Article  Google Scholar 

  31. A. Cengel, HEHT TRANSFER, 2007.

  32. F.W. Sears, M.W. Zemansky, and H.D. Young, University Physics, Addison-Wesley, Reading, 1987

    Google Scholar 

  33. G. Mauer, R. Vaßen, and D. Stöver, Detection of Melting Temperatures and Sources of Errors Using Two-Color Pyrometry During In-Flight Measurements of Atmospheric Plasma-Sprayed Particles, Int. J. Thermophys., 2008, 29, p 764-786

    Article  CAS  Google Scholar 

  34. Y.S. Touloukian, and D.P. DeWitt, Thermophysical Properties of Matter, The TPRC Data Series, Volume 8, Thermal radiative properties Nonmetallic Solids, TEPIAC Publication, 1972, p 526-544

  35. J. Manara, R. Brandt, J. Kuhn, J. Fricke, T. Krell, U. Schulz, M. Peters, and W.A. Kaysser, Emittance of Y2O3 Stabilised ZrO2 Thermal Barrier Coatings Prepared by Electron-Beam Physical-Vapour Deposition, High Temperatures High Pressures, 2000, 32, p 361-368

    Article  CAS  Google Scholar 

  36. P. Coates and D. Lowe, The Fundamentals of Radiation Thermometers, CRC Press, Boca Raton, 2016

    Book  Google Scholar 

  37. J. Fazilleau, C. Delbos, V. Rat, J. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26, p 371-391

    Article  CAS  Google Scholar 

  38. https://www.Oerlikon.Com/ecomaXL/Files/Metco/oerlikon_DSMTS-0001.10_8YO_ZrO_HOSP.Pdf&download=1.

Download references

Acknowledgments

The authors gratefully acknowledge Morvarid Mohammadian and Saeid Garmeh for their kind help to carry out the experiments and for their fruitful discussion on the topic. This project was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Research Chair, and Mitacs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Akbarnozari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbarnozari, A., Ben-Ettouil, F., Amiri, S. et al. Online Diagnostic System to Monitor Temperature of In-Flight Particles in Suspension Plasma Spray. J Therm Spray Tech 29, 908–920 (2020). https://doi.org/10.1007/s11666-020-01045-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01045-2

Keywords

Navigation