Skip to main content
Log in

Identification and characterization of the Bacillus atrophaeus strain J-1 as biological agent of apple ring rot disease

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Bacillus species are promising agents for the biological control of postharvest diseases. Based on the morphological, physiological and biochemical characteristics and 16S rRNA gene sequence analysis, the bacterial strain J-1 was identified as Bacillus atrophaeus. The B. atrophaeus strain J-1 showed broad spectrum antifungal activity against various plant pathogenic fungi. In assays in vitro the metabolites contained in the B. atrophaeus strain J-1 cell-free filtrate had a strong inhibitory effect on Botryosphaeria dothidea. The cell-free filtrate inhibited the growth of B. dothidea in vivo and reduced the disease incidence. Furthermore, PCR detection showed that the strain J-1 had lipopeptide antibiotic biosynthesis genes: fengycin, iturin A and surfactin. The lipopeptide crude extractions from the strain J-1 cell-free filtrate significantly suppressed the growth of B. dothidea. C14 iturin A was isolated by bioactivity-guided fractionation and identified by liquid chromatography–electronic spray ionization–tandem mass spectrometry analysis. This paper is the first to report that B. atrophaeus J-1 efficiently controls apple ring rot disease caused by B. dothidea. Using the B. atrophaeus strain J-1 may provide an alternative control method for the prevention apple ring rot disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G, Jofre E (2012) The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112:159–174

    Article  CAS  PubMed  Google Scholar 

  • Aouadhi C, Rouissi Z, Kmiha S, Mejri S, Maaroufi A (2016) Effect of sporulation conditions on the resistance of Bacillus sporothermodurans spores to nisin and heat. Food Microbiol 54:6–10

    Article  CAS  Google Scholar 

  • Arthur T, Marlène C, Bart S, Philippe J (2010) New approach for the detection of nonribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl Microbiol Biotechnol 85:1521–1531

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Liu X, Li CY, Tian W, Shen QR, Shen B (2014) Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. J Environ Manage 137:120–127

    Article  PubMed  CAS  Google Scholar 

  • Chen XY, Zhang YY, Fu XC, Li Y, Wang Q (2016) Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biol Tec 115:113–121

    Article  CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants - With special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  • Crane JM, Frodyma ME, Bergstrom GC (2014) Nutrient-induced spore germination of a Bacillus amyloliquefaciens, biocontrol agent on wheat spikes. J Appl Microbiol 116:1572–1583

    Article  CAS  PubMed  Google Scholar 

  • Etebarian HR, Sholberg PL, Eastwell KC, Sayler RJ (2005) Biological control of apple blue mold with Pseudomonas fluorescens. Canad J Microbiol 51:591–598

    Article  CAS  Google Scholar 

  • Geetha I, Manonmani AM, Paily KP (2010) Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Appl Microbiol Biotechnol 86:1737–1744

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Guardado-Valdivia L, Tovar-Pérez E, Chacón-López A, López-García U, Gutiérrez-Martínez P, Stoll A, Aguilera S (2018) Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana). Microbiol Res 210:26–32

    Article  PubMed  Google Scholar 

  • Guo Y, Huang E, Yang X, Zhang L, Yousef AE, Zhong J (2016) Isolation and characterization of a Bacillus atrophaeus strain and its potential use in food preservation. Food Control 60:511–518

    Article  CAS  Google Scholar 

  • Han YZ, Zhang B, Shen Q, You CZ, Yu YQ, Li PL, Shang QM (2015) Purification and identification of two antifungal cyclic peptides produced by Bacillus amyloliquefaciens L-H15. Appl Biochem Biotechnol 176:2202–2212

    Article  CAS  PubMed  Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10:273–290

    Article  Google Scholar 

  • Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49:186–191

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Wu Z, Tian C, Liang Y, You C, Chen L (2014) Identification and characterization of the endophytic bacterium Bacillus atrophaeus XW2, antagonistic towards Colletotrichum gloeosporioides. Ann Microbiol 65:1361–1371

    Article  CAS  Google Scholar 

  • Jangir M, Pathak R, Sharma S, Sharma S (2018) Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol Control 123:60–70

    Article  CAS  Google Scholar 

  • Kang L, Hao H, Zhenying Y, Li X, Kang G (2009) The advances in the research of apple ring rot. Chin Agric Sci Bull 25:188–191

    Google Scholar 

  • Kexiang G, Xiaoguang L, Yonghong L, Tianbo Z, Shuliang W (2002) Potential of Trichoderma harzianum and T. atroviride to control Botryosphaeria berengeriana f. sp. piricola, the cause of Apple Ring Rot. J Phytopathol 150:271–276

    Article  Google Scholar 

  • Khyati VP, Hareshkumar K (2014) Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. 3 Biotech 4:283–295

    Google Scholar 

  • Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:929–942

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez J, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Han L, Zhang Y, Fu X, Chen X, Zhang L, Mei R, Wang Q (2013) Biological control of apple ring rot on fruit by Bacillus amyloliquefaciens 9001. Plant Pathol J 29:168–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Guo B, Wan K, Cong M, Huang H, Ge Y (2015) Effects of bacteria-free filtrate from Bacillus megaterium strain L2 on the mycelium growth and spore germination of Alternaria alternata. Biotechnol Biotec Eq 29:1062–1068

    Article  CAS  Google Scholar 

  • Liu J, Sui Y, Wisniewski M, Droby S, Liu Y (2013) Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167:153–160

    Article  PubMed  Google Scholar 

  • Liu C, Yin X, Wang Q, Peng Y, Ma Y, Liu P, Shi J (2018) Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit. J Sci Food Agr 98:5756–5763

    Article  CAS  Google Scholar 

  • Ma ZW, Zhang SY, Sun K, Hu JC (2020) Identification and characterization of a cyclic lipopeptide iturin A from a marine-derived Bacillus velezensis 11–5 as a fungicidal agent to Magnaporthe oryzae in rice. J Plant Dis Prot 127:15–24. https://doi.org/10.1007/s41348-019-00282-0

    Article  Google Scholar 

  • Nakamura LK (1989) Taxonomic Relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int J Syst Bacteriol 39:295–300

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpingny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Peypoux F, Guinand M, Michel G, Delcambe L, Das BC, Lederer E (1978) Structure of iturine A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17:3992–3996

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Rajaofera MJN, Jin PF, Fan YM, Sun QQ, Huang WK, Wang WB, Shen HY, Zhang S, Lin CH, Liu WB, Zheng FC, Miao WG (2018) Antifungal activity of the bioactive substance from Bacillus atrophaeus strain HAB-5 and its toxicity assessment on Danio rerio. Pestic Biochem Phys 147:153–161

    Article  CAS  Google Scholar 

  • Rodríguez-Chávez JL, Juárez-Campusano YS, Delgado G, Aguilar JRP (2019) Identification of lipopeptides from Bacillus strain Q11 with ability to inhibit the germination of Penicillium expansum, the etiological agent of postharvest blue mold disease. Postharvest Biol Tec 155:72–79

    Article  CAS  Google Scholar 

  • Romero DA, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Sneath PHA (1986) Endospore-forming Gram-positive rods and cocci. In: Sneath PHA, Mair NS, Sharp ME, Holt JG (eds) Bergey's Manual of Systematic Bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1104–1207

    Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  PubMed  Google Scholar 

  • Tagg JR, Mcgiven AR (1971) Assay system for bacteriocins. Appl Microbiol 21:943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talibi I, Boubaker H, Boudyach EH, Ben Aoumar AA (2014) Alternative methods for the control of postharvest citrus diseases. J Appl Microbiol 117:1–17

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Ding Z, Zhou ZQ, Wang YZ, Guo LY (2012) Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Dis 96:486–496

    Article  CAS  PubMed  Google Scholar 

  • Touré Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin—a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 39:888–901

    Article  CAS  Google Scholar 

  • Waewthongrak W, Leelasuphakul W, Mccollum G (2014) Cyclic Lipopeptides from Bacillus subtilis ABS-S14 elicit defense-related gene expression in citrus fruit. PLoS ONE 9(10):e109386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waewthongrak W, Pisuchpen S, Leelasuphakul W (2015) Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biol Technol 99:44–49

    Article  CAS  Google Scholar 

  • Wang X, Xu F, Wang J, Jin P, Zheng Y (2014) Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit. Food Chem 136:400–406

    Article  CAS  Google Scholar 

  • Wu LQ, Shang HZ, Gu HK, Zheng J (2019) Bacterial iturins mediate biocontrol activity of Bacillus sp. against postharvest pear fruit-rotting fungi. J Phytopathol 167:501–509

    Article  CAS  Google Scholar 

  • Xin HF, Meng YY, Li JH, Ma HX, Zhang X (2013) Bacillus atrophaeus strain’s colonization in wheat plant and its inhibition efficiency to fusarium head blight. Chin J Ecol 32:1490–1496

    Google Scholar 

  • Xu C, Wang C, Ju L, Zhang R, Biggs AR, Tanaka E, Li B, Sun G (2015) Multiple locus genealogies and phenotypic characters reappraise the causal agents of apple ring rot in China. Fungal Diversity 71:215–231

    Article  CAS  Google Scholar 

  • Yang H, Li X, Li X, Yu HM, Shen ZG (2015) Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal Bioanal Chem 407:2529–2542

    Article  CAS  PubMed  Google Scholar 

  • Yao DH, Ji ZX, Wang CJ, Qi GF, Zhang LL, Ma X, Chen SW (2012) Co-producing iturin A and poly-c-glutamic acid from rapeseed meal under solid state fermentation by the newly isolated Bacillus subtilis strain 3–10. World J Microbiol Biotechnol 28:985–991

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li B, Wang Y, Guo Q, Lu X, Li S, Ma P (2013) Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biotechnol 97:9525–9534

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zhou ZJ, Han Y, Wang ZZ, Fan J, Xiao HZ (2013) Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiol Res 168:598–606

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Han Y, Tan X, Wang J, Zhou ZJ (2014) Optimization of antifungal lipopeptide production from Bacillus sp. BH072 by response surface methodology. J Microbiol 52:324–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2017YFD0200503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Y., Yue, Y., Gu, G. et al. Identification and characterization of the Bacillus atrophaeus strain J-1 as biological agent of apple ring rot disease. J Plant Dis Prot 127, 367–378 (2020). https://doi.org/10.1007/s41348-020-00309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-020-00309-x

Keywords

Navigation