Skip to main content
Log in

Experimental Investigation of the Phase Relationship of the Fe-Cr-Sn System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

In this work, 700 and 850 °C isothermal sections of the Fe-Cr-Sn ternary system were experimentally determined by means of optical microscopy, scanning electron microscopy combined with energy dispersive spectrometry, and X-ray diffraction. At 700 °C, the existence of four binary compounds, FeSn, FeSn2, Fe3Sn2, and σ-FeCr were confirmed. Four three-phase regions were identified in the isothermal section of this system at 700 °C, and the maximum solubility of Cr in FeSn and Fe3Sn2 at 700 °C is 10.7 and 15.6 at%, respectively. At 850 °C, the existence of binary compound Fe5Sn3 phase was confirmed, and a three-phase equilibria of Fe5Sn3, α-(Fe,Cr), and liquid was determined. The maximum solubility of Cr in Fe5Sn3 at 850 °C is 5.8 at%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Vercammen, B. Blanpain, B.C.D. Cooman, and P. Wollants, Cold Rolling Behaviour of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel: The Importance of Deformation Twinning, Acta Mater., 2003, 52(7), p 2005-2012. https://doi.org/10.1016/j.actamat.2003.12.040

    Article  Google Scholar 

  2. Y.F. Gong, H.S. Kim, S.K. Kim, and B.C.D. Cooman, Selective Oxidation and Sub-Surface Phase Transformation During Austenitic Annealing of TWIP Steels, Mater. Sci. Forum, 2010, 654–656, p 258-261. https://doi.org/10.4028/www.scientific.net/MSF.654-656.258

    Article  Google Scholar 

  3. Y.F. Gong and B.C.D. Cooman, Selective Oxidation and Sub-surface Phase Transformation of TWIP Steel During Continuous Annealing, Steel Res. Int., 2011, 82, p 1310-1318. https://doi.org/10.1002/srin.201100122

    Article  Google Scholar 

  4. Ş. Nevin Balo and F. Yakuphanoglu, The Effects of Cr on Isothermal Oxidation Behavior of Fe–30Mn–6Si Alloy, Thermochim. Acta, 2013, 560, p 43-46. https://doi.org/10.1016/j.tca.2013.03.005

    Article  Google Scholar 

  5. H. Liu, F. Li, W. Shi, S. Swaminsthan, Y. He, M. Rohwerder, and L. Li, Challenges in Hot-Dip Galvanizing of High Strength Dual Phase Steel: Surface Selective Oxidation and Mechanical Property Degradation, Surf. Coat. Technol., 2012, 206, p 3428-3436. https://doi.org/10.1016/j.surfcoat.2012.02.001

    Article  Google Scholar 

  6. L. Cho and B.C.D. Cooman, Selective Oxidation of TWIP Steel During Continuous Annealing, Mater. Charact., 2012, 83, p 391-397. https://doi.org/10.1002/srin.201100296

    Article  Google Scholar 

  7. L. Cho, M.S. Kim, Y.H. Kim, and B.C.D. Cooman, Influence of Gas Atmosphere Dew Point on the Selective Oxidation and the Reactive Wetting During Hot Dip Galvanizing of CMnSi TRIP Steel, Metall. Mater. Trans. A, 2013, 44A, p 362-371. https://doi.org/10.1007/s11661-012-1392-1

    Article  ADS  Google Scholar 

  8. L. Cho, M.S. Kim, Y.H. Kim, and B.C.D. Cooman, Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel During Hot Dip Galvanizing, Metall. Mater. Trans. A, 2014, 45, p 4484-4498. https://doi.org/10.1007/s11661-014-2394-y

    Article  Google Scholar 

  9. Y. Kim, J. Lee, K.S. Shin et al., Effect of Dew Point on the Formation of Surface Oxides of Twinning-Induced Plasticity Steel, Mater. Charact., 2014, 89, p 138-145. https://doi.org/10.1016/j.matchar.2014.01.012

    Article  Google Scholar 

  10. Y. Kim, J. Lee, K.S. Shin, S.H. Jeon, K.G. Chin, and J. Lee, The Influence of the Dew Point on the Wettability of Twinning-Induced-Plasticity Steels by Liquid Zn–0.23-wt% Al, Corros. Sci., 2014, 8, p 364-371. https://doi.org/10.1016/j.corsci.2014.04.034

    Article  Google Scholar 

  11. I. Cvijović, I. Arezanović, and M. Piegel, Influence of H2–N2, Mosphere Composition and Annealing Duration on the Selective Surface Oxidation of Low-Carbon Steels, Corros. Sci., 2005, 48, p 980-993. https://doi.org/10.1016/j.corsci.2005.02.022

    Article  Google Scholar 

  12. M. Pourmajidian and J.R. Mcdermid, On the Reactive Wetting of a Medium-Mn Advanced High-Strength Steel During Continuous Galvanizing, Surf. Coat. Technol., 2018, 357, p 418-426. https://doi.org/10.1016/j.surfcoat.2018.10.028

    Article  Google Scholar 

  13. B.F.O. Costa, G.L. Caër, S. Begin-Colin, P.J. Mendes, and N.A. Campos, Characterization of Mechanically Alloyed Fe–Cr–Sn Alloys, J. Mater. Process. Technol., 1999, 92–93, p 395-400. https://doi.org/10.1016/S0924-0136(99)00158-2

    Article  Google Scholar 

  14. B.F.O. Costa, G.L. Caër, and N.A.D. Campos, On the Role of Tin Solubility in the Precipitation of the Sigma-Phase in Fe–Cr–Sn Alloys, Phys. Status Solidi A, 1997, 164, p 687-697. 10.1002/1521-396X(199712)164:2<687::AID-PSSA687>3.0.CO;2-S

    Article  ADS  Google Scholar 

  15. B.F.O. Costa, G.L. Caër, and N.A.D. Campos, Study of Alpha–Sigma Phase Transformation in Mechanically Alloyed Fe–Cr–Sn Alloys, Phys. Status Solidi A, 2001, 183, p 235-250. 10.1002/1521-396X(200102)183:2<235::AID-PSSA235>3.0.CO;2-Z

    Article  ADS  Google Scholar 

  16. E. Essuman, G.H. Meier, J. Żurek, M. Hänsel, and W.J. Quadakkers, The Effect of Water Vapor on Selective Oxidation of Fe–Cr Alloys, Oxid. Met., 2008, 69, p 143-162. https://doi.org/10.1007/s11085-007-9090-x

    Article  Google Scholar 

  17. B.V.N. Rao and G. Thomas, Structure–Property Relations and the Design of Fe-4Cr-C Base Structural Steels for High Strength and Toughness, Metall. Trans. A, 1980, 11, p 441-457. https://doi.org/10.1007/BF02654568

    Article  Google Scholar 

  18. B.F.O. Costa, G.L. Caër, M.M. Amado, J.B. Sousa, and N.A. Campos, Magnetic Properties of Coarse-Grained and Nanocrystalline Fe–Cr–Sn Alloys, J. Alloys Compd., 2000, 308, p 0-55. https://doi.org/10.1016/S0925-8388(00)00914-2

    Article  Google Scholar 

  19. D. Goll, R. Loeffler, and J. Herbst, Magnetic Properties of Hard Magnetic (Fe,Cr)3Sn2 Intermetallic Compound, Phys. Status Solidi (RRL), 2015, 9, p 603-606. https://doi.org/10.1002/pssr.201510243

    Article  ADS  Google Scholar 

  20. H.D. Nüssler, O.V. Goldbeck, and P.J. Spencer, A Thermodynamic Assessment of the Iron-Tin System, Calphad, 1979, 3, p 19-26. https://doi.org/10.1016/0364-5916(79)90018-X

    Article  Google Scholar 

  21. K.C.H. Kumar, P. Wollants, and L. Delaey, Thermodynamic Evaluation of Fe-Sn Phase Diagram, Calphad, 1996, 20, p 139-149. https://doi.org/10.1016/S0364-5916(96)00021-1

    Article  Google Scholar 

  22. Y.C. Huang, W. Gierlotka, and S.W. Chen, Sn–Bi–Fe Thermodynamic Modeling and Sn–Bi/Fe Interfacial Reactions, Intermetallics, 2010, 18, p 984-991. https://doi.org/10.1016/j.intermet.2010.01.026

    Article  Google Scholar 

  23. J.O. Andersson and B. Sundman, Thermodynamic Properties of the CrFe System, Calphad, 1987, 11, p 83-92. https://doi.org/10.1016/0364-5916(87)90021-6

    Article  Google Scholar 

  24. W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, Phase Equilibria and Thermodynamic Properties in the Fe-Cr System, Crit. Rev. Solid State, 2010, 35, p 125-152. https://doi.org/10.1080/10408431003788472

    Article  Google Scholar 

  25. J. Pérez and B. Sundman, Thermodynamic Assessment of the CR-SN Binary System, Calphad, 2001, 25, p 59-66

    Article  Google Scholar 

  26. P. Lafaye, C. Toffolon-Masclet, J.C. Crivello, and J.M. Joubert, Thermodynamic Modelling of the Cr-Nb-Sn System, Calphad, 2017, 57, p 37-45. https://doi.org/10.1016/j.calphad.2017.02.003

    Article  Google Scholar 

  27. N. Bochvar, T. Dobatkina, O. Fabrichnaya, V. Ivanchenko, and D.M. Cupid, Aluminium-Chromium-Titanium. In Landolt-Boernstein New Series Ternary Alloy220 Systems: Phase diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT, vol. 11. Belrin: Springer, 2009, p 72-108

  28. A.M.V.D. Kraan and K.H.J. Buschow, The 57Fe Mössbauer Isomer Shift in Intermetallic Compounds of Iron, Physica B + C, 1986, 138, p 55-62. https://doi.org/10.1016/0378-4363(86)90492-4

    Article  ADS  Google Scholar 

  29. G.L. Caer, B. Malaman, G. Venturini, D. Fruchart, and B. Roques, A Mossbauer Study of FeSn2, J. Phys. F, 1985, 15, p 1813-1827. https://doi.org/10.1088/0305-4608/15/8/019

    Article  ADS  Google Scholar 

  30. B. Malaman, B. Roques, A. Courtois, and J. Protas, Crystal Structure of the Fe3Sn2, Acta Crystallogr. B, 1976, 32, p 1348-1351

    Article  Google Scholar 

  31. W.P. Allen and J.H. Perepezko, Solidification of Undercooled Sn-Sb Peritectic Alloys: Part I. Microstructural Evolution, Metall. Mater. Trans. A, 1991, 22, p 753-764. https://doi.org/10.1007/BF02670298

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Science Foundation of China (Grant Nos. 51671036, 51871030) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. This work is also funded by the Education Department of Jiangsu Province (17KJA430001) and Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya Liu or Xuping Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Liu, Y., Wu, C. et al. Experimental Investigation of the Phase Relationship of the Fe-Cr-Sn System. J. Phase Equilib. Diffus. 41, 234–242 (2020). https://doi.org/10.1007/s11669-020-00808-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00808-2

Keywords

Navigation