Skip to main content
Log in

Production and characterization of melanin pigments derived from Amorphotheca resinae

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

As melanin has emerged as functional pigment with cosmetic, health and food applications, the demand for the pigments is expected to increase. However, the conventional sources (e.g. mushroom, hair, and wool) of melanin production entail pigments inside the substrates which requires the costly extraction procedures, leading to inappropriate scalable production. In this study, we screened 102 of fungal isolates for their ability to produce melanin in the supernatant and selected the only Amorphotheca resinae as a promising candidate. In the peptone yeast extract glucose broth, A. resinae produced the melanin rapidly during the autolysis phase of growth, reaching up 4.5 g/L within 14 days. Structural characterization of the purified melanin from A. resinae was carried out by using elemental analysis, electron paramagnetic resonance, 13C solid-state nuclear magnetic resonance spectroscopy, and pyrolysis-gas chromatography-mass spectrometry in comparison with the standard melanins. The results indicate that the structural properties of A. resinae melanin is similar to the eumelanin which has a wide range of industrial uses. For example, the purified melanin from A. resinae has the potent antioxidant activities as a result of free radical scavenging assays. Consequently, A. resinae KUC3009 can be a promising candidate for scalable production of industrially applicable melanin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhyaru, B.B., Akhmedov, N.G., Katritzky, A.R., and Bowers, C.R. 2003. Solid-state cross-polarization magic angle spinning 13C and 15N NMR characterization of Sepia melanin, Sepia melanin free acid and Human hair melanin in comparison with several model compounds. Magn. Reson. Chem.41, 466–474.

    Article  CAS  Google Scholar 

  • Amens, B.N. 1983. Dietary carcinogens and anticarcinogens. Science221, 1256–1264.

    Article  Google Scholar 

  • Bell, A.A. and Wheeler, M.H. 1986. Biosynthesis and functions of fungal melanins. Annu. Rev. Phytopathol.24, 411–451.

    Article  CAS  Google Scholar 

  • Bensch, K., Braun, U., Groenewald, J.Z., and Crous, P.W. 2012. The genus Cladosporium. Stud. Mycol.72, 1–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner, M. and Hearing, V.J. 2008. The protective role of melanin against UV damage in human skin. Photochem. Photobiol.84, 539–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee, S., Prados-Rosales, R., Frases, S., Itin, B., Casadevall, A., and Stark, R.E. 2012. Using solid-state NMR to monitor the molecular consequences of Cryptococcus neoformans melanization with different catecholamine precursors. Biochemistry51, 6080–6088.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Xie, M.Y., Nie, S.P., Li, C., and Wang, Y.X. 2008. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem.107, 231–241.

    Article  CAS  Google Scholar 

  • d’Ischia M. 2018. Melanin-based functional materials. Int. J. Mol. Sci.19, 228.

    Article  PubMed Central  CAS  Google Scholar 

  • d’Ischia, M., Wakamatsu, K., Napolitano, A., Briganti, S., GarciaBorron, J.C., Kovacs, D., Meredith, P., Pezzella, A., Picardo, M., Sarna, T., et al. 2013. Melanins and melanogenesis: methods, standards, protocols. Pigment Cell Melanoma Res.26, 616–633.

    Article  PubMed  CAS  Google Scholar 

  • Duff, G.A., Roberts, J.E., and Foster, N. 1988. Analysis of the structure of synthetic and natural melanins by solid-phase NMR. Biochemistry27, 7112–7116.

    Article  CAS  PubMed  Google Scholar 

  • Dufossé, L., Fouillaud, M., Caro, Y., Mapari, S.A., and Sutthiwong, N. 2014. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotechnol.26, 56–61.

    Article  PubMed  CAS  Google Scholar 

  • Dworzański, J.P. 1983. Pyrolysis-gas chromatography of natural and synthetic melanins. J. Anal. Appl. Pyrolysis5, 69–79.

    Article  Google Scholar 

  • Eisenman, H.C. and Casadevall, A. 2012. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol.93, 931–940.

    Article  CAS  PubMed  Google Scholar 

  • Gadd, G.M. 1980. Melanin production and differentiation in batch cultures of the polymorphic fungus Aureobasidium pullulans. FEMS Microbiol. Lett.9, 237–240.

    Article  CAS  Google Scholar 

  • Gadd, G.M. and de Rome, L. 1988. Biosorption of copper by fungal melanin. Appl. Microbiol. Biotechnol.29, 610–617.

    Article  CAS  Google Scholar 

  • Gao, Q. and Garcia-Pichel, F. 2011. Microbial ultraviolet sunscreens. Nat. Rev. Microbiol.9, 791–802.

    Article  CAS  PubMed  Google Scholar 

  • Gardes, M. and Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol.2, 113–118.

    Article  CAS  PubMed  Google Scholar 

  • Glass, K., Ito, S., Wilby, P.R., Sota, T., Nakamura, A., Bowers, C.R., Vinther, J., Dutta, S., Summons, R., Briggs, D.E., et al. 2012. Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc. Natl. Acad. Sci. USA109, 10218–10223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendey, N.I. 1964. Some observations on Cladosporium resinae as a fuel contaminant and its possible role in the corrosion of aluminium alloy fuel tanks. Trans. Br. Mycol. Soc.47, 467–475.

    Article  CAS  Google Scholar 

  • Hou, R., Liu, X., Xiang, K., Chen, L., Wu, X., Lin, W., Zheng, M., and Fu, J. 2019. Characterization of the physicochemical properties and extraction optimization of natural melanin from Inonotus hispidus mushroom. Food Chem.277, 533–542.

    Article  CAS  PubMed  Google Scholar 

  • Ito, S. 1989. Optimization of conditions for preparing synthetic pheomelanin. Pigment Cell Res.2, 53–56.

    Article  CAS  PubMed  Google Scholar 

  • Jalmi, P., Bodke, P., Wahidullah, S., and Raghukumar, S. 2012. The fungus Gliocephalotrichum simplex as a source of abundant, extracellular melanin for biotechnological applications. World J. Microbiol. Biotechnol.28, 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Katoh, K. and Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y.J., Wu, W., Chun, S.E., Whitacre, J.F., and Bettinger, C.J. 2013. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl. Acad. Sci. USA110, 20912–20917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, N. and Tsuge, T. 1993. Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. J. Bacteriol.175, 4427–4435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Ai, K., and Lu, L. 2014. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev.114, 5057–5115.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Hou, R., Wang, D., Mai, M., Wu, X., Zheng, M., and Fu, J. 2019. Comprehensive utilization of edible mushroom Auricularia auricula waste residue — Extraction, physicochemical properties of melanin and its antioxidant activity. Food Sci. Nutr.7, 3774–3783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magarelli, M., Passamonti, P., and Renieri, C. 2010. Purification, characterization and analysis of sepia melanin from commercial sepia ink (Sepia Officinalis). CES Med. Vet. Zootec.5, 18–28.

    Google Scholar 

  • Mapari, S.A., Nielsen, K.F., Larsen, T.O., Frisvad, J.C., Meyer, A.S., and Thrane, U. 2005. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr. Opin. Biotechnol.16, 231–238.

    Article  CAS  PubMed  Google Scholar 

  • Pal, A.K., Gajjar, D.U., and Vasavada, A.R. 2013. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med. Mycol.52, 10–18.

    Google Scholar 

  • Parbery, D.G. 1969. Amorphotheca resinae, gen. nov., sp. nov.: The perfect state of Cladosporium resinae. Aust. J. Bot.17, 331–357.

    Article  Google Scholar 

  • Pezzella, A., d’Ischia, M., Napolitano, A., Palumbo, A., and Prota, G. 1997. An integrated approach to the structure of Sepia melanin. Evidence for a high proportion of degraded 5, 6-dihydroxyin-dole-2-carboxylic acid units in the pigment backbone. Tetrahedron53, 8281–8286.

    Article  CAS  Google Scholar 

  • Prados-Rosales, R., Toriola, S., Nakouzi, A., Chatterjee, S., Stark, R., Gerfen, G., Tumpowsky, P., Dadachova, E., and Casadevall, A. 2015. Structural characterization of melanin pigments from commercial preparations of the edible mushroom Auricularia auricula. J. Agric. Food Chem.63, 7326–7332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley, B.I. and Pirt, S.J. 1972. Melanin production by Aspergillus nidulans in batch and chemostat cultures. J. Gen. Microbiol.72, 553–563.

    Article  CAS  PubMed  Google Scholar 

  • Ribera, J., Panzarasa, G., Stobbe, A., Osypova, A., Rupper, P., Klose, D., and Schwarze, F.W.M.R. 2018. Scalable biosynthesis of melanin by the basidiomycete Armillaria cepistipes. J. Agric. Food Chem.67, 132–139.

    Article  PubMed  CAS  Google Scholar 

  • Riesz, J. 2007. The spectroscopic properties of melanin. PhD Thesis, University of Queensland, Australia.

    Google Scholar 

  • Schmaler-Ripcke, J., Sugareva, V., Gebhardt, P., Winkler, R., Kniemeyer, O., Heinekamp, T., and Brakhage, A.A. 2009. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl. Environ. Microbiol.75, 493–503.

    Article  CAS  PubMed  Google Scholar 

  • Sealy, R.C., Hyde, J.S., Felix, C.C., Menon, I.A., and Prota, G. 1982. Eumelanins and pheomelanins: characterization by electron spin resonance spectroscopy. Science217, 545–547.

    Article  CAS  PubMed  Google Scholar 

  • Seifert, K.A., Hughes, S.J., Boulay, H., and Louis-Seize, G. 2007. Taxonomy, nomenclature and phylogeny of three cladosporiumlike hyphomycetes, Sorocybe resinae, Seifertia azaleae and the Hormoconis anamorph of Amorphotheca resinae. Stud. Mycol.58, 235–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shillingford, C., Russell, C.W., Burgess, I.B., and Aizenberg, J. 2016. Bioinspired artificial melanosomes as colorimetric indicators of oxygen exposure. ACS Appl. Mater. Interfaces8, 4314–4317.

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics22, 2688–2690.

    Article  CAS  PubMed  Google Scholar 

  • Stȩpień, K., Dzierzȩga-Lȩcznar, A., Kurkiewicz, S., and Tam, I. 2009. Melanin from epidermal human melanocytes: study by pyrolytic GC/MS. J. Am. Soc. Mass Spectrom.20, 464–468.

    Article  PubMed  CAS  Google Scholar 

  • Tran, M.L., Powell, B.J., and Meredith, P. 2006. Chemical and structural disorder in eumelanins: a possible explanation for broadband absorbance. Biophys. J.90, 743–752.

    Article  CAS  PubMed  Google Scholar 

  • Vrabl, P., Schinagl, C.W., Artmann, D.J., Heiss, B., and Burgstaller, W. 2019. Fungal growth in batch culture-what we could benefit if we start looking closer. Front. Microbiol.10, 2391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Dillon, J., and Gaillard, E.R. 2006. Antioxidant properties of melanin in retinal pigment epithelial cells. Photochem. Photobiol.82, 474–479.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Li, T., Ma, P., Bai, H., Xie, Y., Chen, M., and Dong, W. 2016. Simultaneous enhancements of UV-shielding properties and photostability of poly (vinyl alcohol) via incorporation of sepia eumelanin. ACS Sustainable Chem. Eng.4, 2252–2258.

    Article  CAS  Google Scholar 

  • Wang, X., Wu, Q., Wu, Y., Chen, G., Yue, W., and Liang, Q. 2012. Response surface optimized ultrasonic-assisted extraction of flavonoids from Sparganii rhizoma and evaluation of their in vitro antioxidant activities. Molecules17, 6769–6783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, T.J., Bruns, T., Lee, S., and Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications. Innis, M.A., Gelfand, D.H., Shinsky, J.J., and White, T.J. (eds.) pp. 315–322. Academic Press, San Diego, California, USA.

    Google Scholar 

  • Wu, Z., Zhang, M., Yang, H., Zhou, H., and Yang, H. 2018. Production, physico-chemical characterization and antioxidant activity of natural melanin from submerged cultures of the mushroom Auricularia auricula. Food Biosci.26, 49–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korea University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyu-Hyeok Kim.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, JJ., Kim, J.Y., Kwon, S.L. et al. Production and characterization of melanin pigments derived from Amorphotheca resinae. J Microbiol. 58, 648–656 (2020). https://doi.org/10.1007/s12275-020-0054-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-0054-z

Keywords

Navigation