Skip to main content
Log in

Flexible, wearable microfluidic contact lens with capillary networks for tear diagnostics

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Wearable contact lenses attract great interest as a minimally invasive diagnostic platform. With advances in biomaterials, electronics and microfabrication, contact lenses offer the potential to analyze the concentration of biomarkers of interest in tears. Emerging wearable contact lenses typically involve external electrodes and batteries, signal processing and wireless transmission, which is accompanied by increased stiffness in the contact lenses and do not have direct means for detecting tears or storing small volumes of tears. Here, we developed a UV-curable biomaterial with good biocompatibility, hydrophilicity and elasticity for fabricating flexible, wearable contact lenses. The contact lens defined a set of tear inlets that allowed tears to flow spontaneously through the capillary network and reservoirs. The previously embedded chemical substrates responded via colorimetric methods to biomarkers in the tears, such as glucose, chloride and urea. Then, the external device took pictures and read the RGB values in the photos to obtain the concentration range of the biomarkers. Furthermore, in vitro tests using an artificial microfluidic hydrogel eyeball device demonstrated the convenient and reliable operation of the lens. Our work offers a new paradigm for noninvasive, multi-target microfluidic contact lenses with capillary networks for tear storage and diagnostics. The fabricated contact lens could serve as an immense point-of-care diagnostic platform in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pankratov D, Gonzalez-Arribas E, Blum Z, Shleev S (2016) Tear based bioelectronics. Electroanalysis 28(6):1250–1266

    Article  CAS  Google Scholar 

  2. van Delft JL, Meijer F, van Best JA, van Haeringen NJ (1997) Permeability of blood-tear barrier to fluorescein and albumin after application of platelet-activating factor to the eye of the guinea pig. Mediat Inflamm 6(5–6):381–383

    Article  Google Scholar 

  3. Khuri RN (1994) U.S. Patent No. 5,352,411. Washington, DC: U.S. Patent and Trademark Office

  4. Harvey D, Hayes NW, Tighe B (2012) Fibre optics sensors in tear electrolyte analysis: towards a novel point of care potassium sensor. Contact Lens Anterio 35(3):137–144

    Article  Google Scholar 

  5. Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH (2015) Contact lens sensors in ocular diagnostics. Adv Healthc Mater 4(6):792–810

    Article  CAS  Google Scholar 

  6. Yetisen AK, Jiang N, Tamayol A, Ruiz-Esparza GU, Zhang YS, Medina-Pando S, Gupta A, Wolffsohn JS, Butt H, Khademhosseini A, Yun SH (2017) Paper-based microfluidic system for tear electrolyte analysis. Lab Chip 17(6):1137–1148

    Article  CAS  Google Scholar 

  7. Boehm N, Funke S, Wiegand M, Wehrwein N, Pfeiffer N, Grus FH (2013) Alterations in the tear proteome of dry eye patients-a matter of the clinical phenotype. Invest Ophth Vis Sci 54(3):2385–2392

    Article  Google Scholar 

  8. Baca JT, Finegold DN, Asher SA (2007) Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul Surf 5(4):280–293

    Article  Google Scholar 

  9. Chu MX, Miyajima K, Takahashi D, Arakawa T, Sano K, Sawada S, Kudo H, Iwasaki Y, Akiyoshi K, Mochizuki M, Mitsubayashi K (2011) Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta 83(3):960–965

    Article  CAS  Google Scholar 

  10. Jacob JT, Ham B (2008) Compositional profiling and biomarker identification of the tear film. Ocul Surf 6(4):175–185

    Article  Google Scholar 

  11. Moreddu R, Vigolo D, Yetisen AK (2019) Contact lens technology: from fundamentals to applications. Adv Healthc Mater 8(15):1900368

    Article  Google Scholar 

  12. Maulvi FA, Lakdawala DH, Shaikh AA, Desai AR, Choksi HH, Vaidya RJ, Ranch KM, Koli AR, Vyas BA, Shah DO (2016) In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery. J Control Release 226:47–56

    Article  CAS  Google Scholar 

  13. Jiang N, Montelongo Y, Butt H, Yetisen AK (2018) Microfluidic contact lenses. Small 14(15):e1704363

    Article  Google Scholar 

  14. Senior M (2014) Novartis signs up for Google smart lens. Nat Biotechnol 32(9):856

    Article  CAS  Google Scholar 

  15. Choi K, Park HG (2017) Smart reinvention of the contact lens with graphene. ACS Nano 11(6):5223–5226

    Article  CAS  Google Scholar 

  16. Kim J, Kim M, Lee MS, Kim K, Ji S, Kim YT, Park J, Na K, Bae KH, Kim HK, Bien F, Lee CY, Park JU (2017) Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun 8:14997

    Article  Google Scholar 

  17. Mak WC, Cheung KY, Orban J, Lee CJ, Turner APF, Griffith M (2015) Surface-engineered contact lens as an advanced theranostic platform for modulation and detection of viral infection. Acs Appl Mater Inter 7(45):25487–25494

    Article  CAS  Google Scholar 

  18. Song C, Ben-Shlomo G, Que L (2019) A multifunctional smart soft contact lens device enabled by nanopore thin film for glaucoma diagnostics and in situ drug delivery. J Microelectromech Syst 28(5):810–816

    Article  Google Scholar 

  19. Lee S, Jo I, Kang S, Jang B, Moon J, Park JB, Lee S, Rho S, Kim Y, Hong BH (2017) Smart contact lenses with graphene coating for electromagnetic interference shielding and dehydration protection. ACS Nano 11(6):5318–5324

    Article  CAS  Google Scholar 

  20. Park J, Kim J, Kim SY, Cheong WH, Jang J, Park YG, Na K, Kim YT, Heo JH, Lee CY, Lee JH, Bien F, Park JU (2018) Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv 4(1):9841

    Article  Google Scholar 

  21. Pandey J, Liao YT, Lingley A, Mirjalili R, Parviz B, Otis BP (2010) A fully integrated RF-powered contact lens with a single element display. IEEE Trans Biomed Circ S 4(6):454–461

    Article  CAS  Google Scholar 

  22. Liao YT, Yao HF, Lingley A, Parviz B, Otis BP (2012) A 3-mu W CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J Solid-St Circ 47(1):335–344

    Article  Google Scholar 

  23. De Smedt S (2015) Noninvasive intraocular pressure monitoring: current insights. Clin Ophthalmol (Auckland, NZ) 9:1385–1392

    Article  Google Scholar 

  24. Elder JA (2003) Ocular effects of radio frequency energy. Bioelectromagnetics 24(S6):S148–S161

    Article  Google Scholar 

  25. Van Lith R, Baker E, Ware H, Yang J, Farsheed AC, Sun C, Ameer G (2016) 3D-printing strong high-resolution antioxidant bioresorbable vascular stents. Adv Mater Technol 1(9):1600138

    Article  Google Scholar 

  26. Sun MH, Luo CX, Xu LP, Ji H, Qi OY, Yu DP, Chen Y (2005) Artificial lotus leaf by nanocasting. Langmuir 21(19):8978–8981

    Article  CAS  Google Scholar 

  27. Olanrewaju A, Beaugrand M, Yafia M, Juncker D (2018) Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab Chip 18(16): 2323–2347

    Article  CAS  Google Scholar 

  28. Bavil AK, Kim J (2018) A capillary flow-driven microfluidic system for microparticle-labeled immunoassays. Analyst 143(14):3335–3342

    Article  Google Scholar 

  29. Young T (1805) III. An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87

    Google Scholar 

  30. Delamarche E, Bernard A, Schmid H, Bietsch A, Michel B, Biebuyck H (1998) Microfluidic networks for chemical patterning of substrate: design and application to bioassays. J Am Chem Soc 120(3):500–508

    Article  CAS  Google Scholar 

  31. Eijkel JCT, van den Berg A (2006) Young 4ever: the use of capillarity for passive flow handling in lab on a chip devices. Lab Chip 6(11):1405–1408

    Article  CAS  Google Scholar 

  32. Zhongkuan L, Xinwang D, Huiyuan H (2016) Preparation and properties of PHEMA hydrogel material. Rare Metal Mater Eng 45:427–430

    Google Scholar 

  33. Acun A, Hasirci V (2014) Construction of a collagen-based, split-thickness cornea substitute. J Biomater Sci Polym Ed 25(11):1110–1132

    Article  CAS  Google Scholar 

  34. Chetty S, Gruppetta S (2012) Structured illumination microscopy for in vivo human retinal imaging: a theoretical assessment. Opt Express 20(23):25700–25710

    Article  Google Scholar 

  35. Farkas A, Vamos R, Bajor T, Mullner N, Lazar A, An H (2003) Utilization of lacrimal urea assay in the monitoring of hemodialysis: conditions, limitations and lacrimal arginase characterization. Exp Eye Res 76(2):183–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Project of Basic Research of Shenzhen, China (JCYJ20170412101508433, JCYJ20180507183655307 & JCYJ20170817094728456)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Yang or Shengli Mi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yao, H., Zhao, G. et al. Flexible, wearable microfluidic contact lens with capillary networks for tear diagnostics. J Mater Sci 55, 9551–9561 (2020). https://doi.org/10.1007/s10853-020-04688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04688-2

Navigation