Skip to main content
Log in

Gallium–Boron–Phosphide (\(\hbox {GaBP}_{2}\)): a new III–V semiconductor for photovoltaics

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using machine learning (ML) approach, we unearthed a new III–V semiconducting material having an optimal bandgap for high-efficient photovoltaics with the chemical composition of Gallium–Boron–Phosphide (\(\hbox {GaBP}_{2}\), space group: \(\hbox {Pna2}_{1}\)). ML predictions are further validated by state-of-the-art ab initio density functional theory simulations. The stoichiometric Heyd–Scuseria–Ernzerhof bandgap of \(\hbox {GaBP}_{2}\) is noted to be 1.65 eV, a close ideal value (1.4–1.5 eV) to reach the theoretical Queisser–Shockley limit. The calculated electron mobility is similar to that of silicon. Unlike perovskites, the newly discovered material is thermally, dynamically and mechanically stable. Above all the chemical composition of \(\hbox {GaBP}_{2}\) is non-toxic and relatively earth abundant, making it a new generation of PV material. Using ML, we showed that with a minimal set of features, the bandgap of III–III–V and II–IV–V semiconductor can be predicted up to an RMSE of less than 0.4 eV. We have presented a set of scaling laws, which can be used to estimate the bandgap of new III–III–V and II–IV–V semiconductor, with three different crystal phases, within an RMSE of \(\approx \) 0.4 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shockley W, Queisser HJ (1961) Slip patterns on boron‐doped silicon surfaces. J Appl Phys 32:510–519

    Article  CAS  Google Scholar 

  2. Miller OD, Yablonovitch E, Kurtz SR (2012) Strong internal and external luminescence as solar cells approach the shockley–queisser limit. IEEE J Photovolt 2:303–311

    Article  Google Scholar 

  3. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  4. Priolo F, Gregorkiewicz T, Galli M, Krauss TF (2014) Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol 9:19–32

    Article  CAS  Google Scholar 

  5. Green M A (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt 17:183–189

    Article  CAS  Google Scholar 

  6. Curtarolo S, Hart GL, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12:191–201

    Article  CAS  Google Scholar 

  7. Greenu M, Emery K, Hishikawa Y, Warta W, Dunlop E (2015) Solar cell efficiency tables (version 44). Prog Photovolt 23:805–812

    Article  Google Scholar 

  8. Singh P, Ravindra NM (2012) Temperature dependence of solar cell performance—an analysis. Sol Energy Mater Sol 101:36–45

    Article  CAS  Google Scholar 

  9. Wesoff E (2016) Green Tech Media (PV Modules)

  10. Peters IM, Buonassisi T (2018) Energy yield limits for single-junction solar cells. Joule 2:1160–1170

    Article  CAS  Google Scholar 

  11. Wang R, Mujahid M, Duan Y, Wang Z-K, Xue J, Yang Y (2019) A review of perovskites solar cell stability. Adv Funct Mater 29:1808843

    Article  CAS  Google Scholar 

  12. Meng L, You J, Yang Y (2018) Addressing the stability issue of perovskite solar cells for commercial applications. Nat Commun 9:5265

    Article  CAS  Google Scholar 

  13. Lahourcade L, Coronel NC, Delaney KT, Shukla SK, Spaldin NA, Atwater HA (2013) Structural and optoelectronic characterization of RF sputtered ZnSnN2. Adv Mater 25:2562–2566

    Article  CAS  Google Scholar 

  14. Senabulya N, Feldberg N, Makin RA, Yang Y, Shi G, Jones CM, Kioupakis E, Mathis J, Clarke R, Durbin SM (2016) Stabilization of orthorhombic phase in single-crystal ZnSnN2 films. AIP Adv 6:075019

    Article  CAS  Google Scholar 

  15. Feldberg N, Aldous J, Linhart W, Phillips L, Durose K, Stampe P, Kennedy R, Scanlon D, Vardar G, Field R III et al (2013) Growth of ZnSnN2 by molecular beam epitaxy. Appl Phys Lett 103:042109

    Article  CAS  Google Scholar 

  16. Skachkov D, Quayle PC, Kash K, Lambrecht WR (2016) Disorder effects on the band structure of ZnGeN2: role of exchange defects. Phys Rev B 94:205201

    Article  Google Scholar 

  17. Zakutayev A, Allen AJ, Zhang X, Vidal J, Cui Z, Lany S, Yang M, DiSalvo FJ, Ginley DS (2014) Experimental synthesis and properties of metastable CuNbN2 and theoretical extension to other ternary copper nitrides. Chem Mater 26:4970–4977

    Article  CAS  Google Scholar 

  18. Wang C, Chen S, Yang J-H, Lang L, Xiang H-J, Gong X-G, Walsh A, Wei S-H (2014) Design of I2–II–IV–VI4 semiconductors through element substitution: the thermodynamic stability limit and chemical trend. Chem Mater 26:3411–3417

    Article  CAS  Google Scholar 

  19. Fioretti AN, Zakutayev A, Moutinho H, Melamed C, Perkins JD, Norman AG, Al-Jassim M, Toberer ES, Tamboli AC (2015) Combinatorial insights into doping control and transport properties of zinc tin nitride. J Mater Chem C 3:11017–11028

    Article  CAS  Google Scholar 

  20. Martinez AD, Warren EL, Gorai P, Borup KA, Kuciauskas D, Dippo PC, Ortiz BR, Macaluso RT, Nguyen SD, Greenaway AL et al (2016) Solar energy conversion properties and defect physics of ZnSiP2. Energy Environ Sci 9:1031–1041

    Article  CAS  Google Scholar 

  21. Narang P, Chen S, Coronel NC, Gul S, Yano J, Wang L-W, Lewis NS, Atwater HA (2014) Bandgap tunability in Zn(Sn,Ge)N2 semiconductor alloys. Adv Mater 26:1235–1241

    Article  CAS  Google Scholar 

  22. Pandey M, Kuhar K, Jacobsen KW (2017) II–IV–V2 and III–III–V2 polytypes as light absorbers for single junction and tandem photovoltaic devices. J Phys Chem C 121:17780–17786

    Article  CAS  Google Scholar 

  23. Tang F, Zhu T, Oehler F, Fu WY, Griffiths JT, Massabuau FC-P, Kappers MJ, Martin TL, Bagot PA, Moody MP et al (2015) Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography. Appl Phys Lett 106:072104

    Article  CAS  Google Scholar 

  24. Lee JK, Park B, Song K, Jung WY, Tyutyunnikov D, Yang T, Koch CT, Park CG, van Aken PA, Kim Y-M et al (2018) Strain-induced indium clustering in non-polar a-plane InGaN quantum wells. Acta Mater 145:109–122

    Article  CAS  Google Scholar 

  25. Reyes DF, Gonzalez D, Bastiman F, Dominguez L, Hunter CJ, Guerrero E, Roldan MA, Mayoral A, David JP, Sales DL (2013) Photoluminescence enhancement of InAs (Bi) quantum dots by Bi clustering. Appl Phys Express 6:042103

    Article  CAS  Google Scholar 

  26. Martini S, Quivy A, Lamas T, Da Silva M, Da Silva E, Leite J (2003) Influence of indium segregation on the RHEED oscillations during the growth of InGaAs layers on a GaAs (0 0 1) surface. J Cryst Growth 251:101–105

    Article  CAS  Google Scholar 

  27. Barlow AJ, Sano N, Murdoch BJ, Portoles JF, Pigram PJ, Cumpson PJ (2018) Observing the evolution of regular nanostructured indium phosphide after gas cluster ion beam etching. Appl Surf Sci 459:678–685

    Article  CAS  Google Scholar 

  28. Mannarino M, Chintala R, Moussa A, Merckling C, Eyben P, Paredis K, Vandervorst W (2015) Surface characterization of InP trenches embedded in oxide using scanning probe microscopy. J Appl Phys 118:225304

    Article  CAS  Google Scholar 

  29. Scanlon D O, Walsh A (2012) Bandgap engineering of ZnSnP2 for high-efficiency solar cells. Appl Phys Lett 100:251911

    Article  CAS  Google Scholar 

  30. Gautam R, Singh P, Sharma S, Kumari S, Verma A (2015) Structural, electronic, optical, elastic and thermal properties of CdGeP2 with the application in solar cell devices. Mater Sci Semicond Process 40:727–736

    Article  CAS  Google Scholar 

  31. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A (2018) Machine learning for molecular and materials science. Nature 559:547–555

    Article  CAS  Google Scholar 

  32. Sparks TD, Gaultois MW, Oliynyk A, Brgoch J, Meredig B (2016) Data mining our way to the next generation of thermoelectrics. Scr Mater 111:10–15

    Article  CAS  Google Scholar 

  33. Xue D, Xue D, Yuan R, Zhou Y, Balachandran PV, Ding X, Sun J, Lookman T (2017) An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater 125:532–541

    Article  CAS  Google Scholar 

  34. De Jong M, Chen W, Notestine R, Persson K, Ceder G, Jain A, Asta M, Gamst A (2016) A statistical learning framework for materials science: application to elastic moduli of k-nary inorganic polycrystalline compounds. Sci Rep 6:34256

    Article  CAS  Google Scholar 

  35. Zheng X, Zheng P, Zhang R-Z (2018) Machine learning material properties from the periodic table using convolutional neural networks. Chem Sci 9:8426–8432

    Article  CAS  Google Scholar 

  36. Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R (2013) Accelerating materials property predictions using machine learning. Sci Rep 3:2810

    Article  Google Scholar 

  37. Goodman C (1957) A new group of compounds with diamond type (chalcopyrite) structure. Nature 179:828–829

    Article  CAS  Google Scholar 

  38. Jaffe J, Zunger A (1984) Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors. Phys Rev B 29:1882–1906

    Article  CAS  Google Scholar 

  39. Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12: 2825-2830.

  40. Chen T, Guestrin C (2016) In: Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining. ACM, pp 785–794

  41. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  42. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  43. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 77:3865–3868

    Article  CAS  Google Scholar 

  45. Monkhorst H J, Pack J D (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  46. Becke AD, Johnson E R (2006) A simple effective potential for exchange. J Chem Phys 124:221101

    Article  CAS  Google Scholar 

  47. Heyd J, Peralta JE, Scuseria GE, Martin RL (2005) Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J Chem Phys 123:174101

    Article  CAS  Google Scholar 

  48. Mandia AK, Muralidharan B, Choi J-H, Lee S-C, Bhattacharjee S (2019) arXiv preprint arXiv:1907.08005

  49. Huang Y, Yu C, Chen W, Liu Y, Li C, Niu C, Wang F, Jia Y (2019) Band gap and band alignment prediction of nitride-based semiconductors using machine learning. J Mater Chem C 7:3238–3245

    Article  CAS  Google Scholar 

  50. Rajan AC, Mishra A, Satsangi S, Vaish R, Mizuseki H, Lee K-R, Singh AK (2018) Machine-learning-assisted accurate band gap predictions of functionalized MXene. Chem Mater 30:4031–4038

    Article  CAS  Google Scholar 

  51. Olsthoorn B, Geilhufe RM, Borysov SS, Balatsky AV (2019) Band gap prediction for large organic crystal structures with machine learning. Adv. Quantum Technol 2:1900023

    Article  CAS  Google Scholar 

  52. Sotskov V et al (2018) Band gap prediction for inorganic crystals with machine learning. Master thesis

  53. Dalven R (1973) Empirical relation between energy gap and lattice constant in cubic semiconductors. Phys Rev B 8:6033–6034

    Article  CAS  Google Scholar 

  54. Morales-Garcia A, Valero R, Illas F (2017) An empirical, yet practical way to predict the band gap in solids by using density functional band structure calculations. J Phys Chem C 121:18862–18866

    Article  CAS  Google Scholar 

  55. Chan M, Ceder G (2010) Efficient band gap prediction for solids. Phys Rev Lett 105:196403

    Article  CAS  Google Scholar 

  56. Garza A J, Scuseria G E (2016) Predicting band gaps with hybrid density functionals. J Phys Chem Lett 7:4165–4170

    Article  CAS  Google Scholar 

  57. Nguimdo G D, Joubert D P (2015) A density functional (PBE, PBEsol, HSE06) study of the structural, electronic and optical properties of the ternary compounds AgAlX2 (X = S, Se, Te). Eur Phys J B 88:113

    Article  CAS  Google Scholar 

  58. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scr Mater 108:1–5

    Article  CAS  Google Scholar 

  59. Mouhat F, Coudert F-X (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104

    Article  CAS  Google Scholar 

  60. Rode D (1975) Low-field electron transport. In: Semiconductors and semimetals, vol 10. Elsevier, Amsterdam, pp 1–89

  61. Mandia AK, Patnaik R, Muralidharan B, Lee S-C, Bhattacharjee S (2019) Ab initio semi-classical electronic transport in ZnSe: the role of inelastic scattering mechanisms. J Phys Condens Matter 31:345901

    Article  CAS  Google Scholar 

  62. Faghaninia A, Ager JW III, Lo CS (2015) Ab initio electronic transport model with explicit solution to the linearized Boltzmann transport equation. Phys Rev B 91:235123

    Article  CAS  Google Scholar 

  63. Gunning BP, Moseley MW, Koleske DD, Allerman AA, Lee SR (2017) Phase degradation in BxGa1−xN films grown at low temperature by metalorganic vapor phase epitaxy. J Cryst Growth 464:190–196

    Article  CAS  Google Scholar 

  64. Williams L, Kioupakis E (2017) BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs. Appl Phys Lett 111:211107

    Article  CAS  Google Scholar 

  65. Atsumi K, Inoue Y, Mimura H, Aoki T, Nakano T (2014) Neutron detection using boron gallium nitride semiconductor material. APL Mater 2:032106

    Article  CAS  Google Scholar 

  66. Orsal G, Maloufi N, Gautier S, Alnot M, Sirenko AA, Bouchaour M, Ougazzaden A (2008) Effect of boron incorporation on growth behavior of BGaN/GaN by MOVPE. J Cryst Growth 310:5058–5062

    Article  CAS  Google Scholar 

  67. Ougazzaden A, Gautier S, Moudakir T, Djebbour Z, Lochner Z, Choi S, Kim HJ, Ryou J-H, Dupuis RD, Sirenko AA (2008) Bandgap bowing in BGaN thin films. Appl Phys Lett 93:083118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Upendra Kumar is profoundly thankful to Mr. Dhaval Patel the founder of CodeBasics-Lets code! (https://codebasicshub.com/) website for giving motivation and valuable suggestion in machine learning.

Author information

Authors and Affiliations

Authors

Contributions

UK and SN conceived the idea and contribute equally in the the machine learning and DFT part of the calculation. SC carried out the transport calculations. SN and UK wrote the manuscript. All authors read the manuscript. SB and S-C. L supervised the project.

Corresponding author

Correspondence to Seung-Cheol Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 951 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, U., Nayak, S., Chakrabarty, S. et al. Gallium–Boron–Phosphide (\(\hbox {GaBP}_{2}\)): a new III–V semiconductor for photovoltaics. J Mater Sci 55, 9448–9460 (2020). https://doi.org/10.1007/s10853-020-04631-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04631-5

Navigation