Skip to main content
Log in

In Situ Electron Diffraction Investigation of Solid State Synthesis of Co-In2O3 Ferromagnetic Nanocomposite Thin Films

  • Advanced Characterization of Interfaces and Thin Films
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In situ electron diffraction was used to study structural transformations during the formation of Co-In2O3 ferromagnetic nanocomposite thin films in a thermite reaction of In/Co3O4 bilayer thin films. Heating was performed from room temperature to 600°C at a rate of 4°C/min, while simultaneously electron diffraction patterns were recorded at a speed of 4 frames/min. This made it possible to determine the initiation, 185°C, and finishing, 550°C, temperatures of the solid-state synthesis, as well as the change in the phase composition during the thermite reaction. The synthesized Co-In2O3 film nanocomposite contained ferromagnetic cobalt nanoclusters surrounded by an In2O3 layer, with an average size of 20 nm, and had a magnetization of 400 emu/cm3 and a coercivity of 50 Oe at room temperature. The estimate of the effective interdiffusion coefficient of the reaction suggests that the main mechanism for the formation of the Co-In2O3 nanocomposite is diffusion along the grain boundaries and dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.-W. Nan and J. Quanxi, MRS Bull. 40, 719 (2015). https://doi.org/10.1557/mrs.2015.196.

    Article  Google Scholar 

  2. S. Behrens, Nanoscale 3, 877 (2011). https://doi.org/10.1039/C0NR00634C.

    Article  Google Scholar 

  3. X. Batlle and A. Labarta, J. Phys. D 35, R15 (2002). https://doi.org/10.1088/0022-3727/35/6/201.

    Article  Google Scholar 

  4. A.K. Rathore, S.P. Pati, M. Ghosh, A. Roychowdhury, and D. Das, J. Mater. Sci. Mater. Electron. 28, 6950 (2017). https://doi.org/10.1007/s10854-017-6395-7.

    Article  Google Scholar 

  5. G.-R. Xu, J.-J. Shi, W.-H. Dong, Y. Wen, X.-P. Min, A.-P. Tang, J. Xu, H. Yang, W. Fu, W. Fan, Q. Zhu, and G. Zou, J. Alloys Compds. 630, 266 (2015). https://doi.org/10.1016/j.jallcom.2015.01.067.

    Article  Google Scholar 

  6. E.B. Dokukin, R.V. Erhan, A.Kh. Islamov, M.E. Dokukin, N.S. Perov, and E.A. Gan’shina, Phys. Status Solidi B 250, 1656 (2013). https://doi.org/10.1002/pssb.201248379.

    Article  Google Scholar 

  7. R. Goyal, S. Lamba, and S. Annapoorni, Phys. Status Solidi A 213, 1309 (2016). https://doi.org/10.1002/pssa.201532704.

    Article  Google Scholar 

  8. B. Gokul, P. Saravanan, V.T.P. Vinod, M. Černík, and R. Sathyamoorthy, Powder Technol. 274, 98 (2015). https://doi.org/10.1016/j.powtec.2015.01.002.

    Article  Google Scholar 

  9. Y. Cao, N. Kobayashi, Y.-W. Zhang, S. Ohnuma, and H. Masumoto, J. Appl. Phys. 122, 133903-1 (2017). https://doi.org/10.1063/1.5005620.

    Article  Google Scholar 

  10. S. Gupta, R. Sachan, A. Bhaumik, and J. Narayan, Nanotechnology 29, 1 (2018). https://doi.org/10.1088/1361-6528/aadd75.

    Article  Google Scholar 

  11. Q. Dai, D. Wu, K. Guo, J. Zhang, M. Zhang, R. Cui, and C. Deng, J. Mater. Sci. Mater. Electron. 29, 17333 (2018). https://doi.org/10.1007/s10854-018-9828-z.

    Article  Google Scholar 

  12. S. Zhou, K. Potzger, J. von Borany, R. Grotzschel, W. Skorupa, M. Helm, and J. Fassbender, Phys. Rev. B 77, 035209-1 (2008). https://doi.org/10.1103/PhysRevB.77.035209.

    Article  Google Scholar 

  13. P. Satyarthi, S. Ghosh, P. Mishra, B.R. Sekhar, F. Singh, P. Kumar, D. Kanjilal, R.S. Dhaka, and P. Srivastava, J. Magn. Magn. Mater. 385, 318 (2015). https://doi.org/10.1016/j.jmmm.2015.03.029.

    Article  Google Scholar 

  14. N.R. Panda, S.P. Pati, A. Das, and D. Das, Appl. Surf. Sci. 449, 654 (2017). https://doi.org/10.1016/j.apsusc.2017.12.003.

    Article  Google Scholar 

  15. E.L. Drezin, Prog. Energy Combust. Sci. 35, 141 (2009). https://doi.org/10.1016/jpecs.2008.09.001.

    Article  Google Scholar 

  16. Y. Yang, D.-R. Yan, Y.-C. Dong, X.-G. Chen, L. Wang, Z.-H. Chu, J.-X. Zhang, and J.-N. He, J. Alloys Compd. 579, 1 (2013). https://doi.org/10.1016/j.jallcom.2013.05.045.

    Article  Google Scholar 

  17. A.S. Mukasyan and A.S. Rogachev, Adv. Power Technol. 26, 654 (2015). https://doi.org/10.1016/j.apt.2015.03.013.

    Article  Google Scholar 

  18. X. Zhou, M. Torabi, J. Lu, R. Shen, and K. Zhang, ACS Appl. Mater. Interfaces 6, 3058 (2014). https://doi.org/10.1021/am4058138.

    Article  Google Scholar 

  19. A.H. Kinsey, K. Slusarski, S. Sosa, and T.P. Weihs, ACS Appl. Mater. Interfaces 9, 22026 (2017). https://doi.org/10.1021/acsami.7b03071.

    Article  Google Scholar 

  20. I. Abdallah, J. Zapata, G. Lahiner, B. Warot-Fonrose, J. Cure, Y. Chabal, A. Esteve, and C. Rossi, ACS Appl. Energy Mater. 1, 1762 (2018). https://doi.org/10.1021/acsaem.8b00296.

    Article  Google Scholar 

  21. J. Zapata, A. Nicollet, B. Julien, G. Lahiner, A. Esteve, and C. Rossi, Combus. Flame 205, 389 (2019). https://doi.org/10.1016/j.combustflame.2019.04.031.

    Article  Google Scholar 

  22. V.G. Myagkov, I.A. Tambasov, O.A. Bayukov, V.S. Zhigalov, L.E. Bykova, Y.L. Mikhlin, M.N. Volochaev, and G.N. Bondarenko, J. Alloys Compds. 612, 189 (2014). https://doi.org/10.1016/j.jallcom.2014.05.176.

    Article  Google Scholar 

  23. I.A. Tambasov, K.O. Gornakov, V.G. Myagkov, L.E. Bykova, V.S. Zhigalov, A.A. Matsynin, and E.V. Yozhikova, Phys. B 478, 135 (2015). https://doi.org/10.1016/j.physb.2015.08.054.

    Article  Google Scholar 

  24. L.E. Bykova, V.S. Zhigalov, V.G. Myagkov, M.N. Volochaev, A.A. Matsynin, G.N. Bondarenko, and G.S. Patrin, Phys. Solid State 60, 2072 (2018). https://doi.org/10.1134/S1063783418100049.

    Article  Google Scholar 

  25. V.G. Myagkov, L.E. Bykova, V.S. Zhigalov, A.A. Matsynin, M.N. Volochaev, I.A. Tambasov, YuL Mikhlin, and G.N. Bondarenko, J. Alloys Compds. 724, 820 (2017). https://doi.org/10.1016/j.jallcom.2017.07.081.

    Article  Google Scholar 

  26. M.N. Volochaev, S.V. Komogortsev, V.G. Myagkov, L.E. Bykova, V.S. Zhigalov, N.P. Shestakov, D.A. Velikanov, D.A. Smolyakov, A.V. Lukyanenko, V.B. Rachek, Y.Y. Loginov, I.A. Tambasov, and A.A. Matsynin, Phys. Solid State 60, 1425 (2018). https://doi.org/10.1134/s1063783418070302.

    Article  Google Scholar 

  27. V.G. Myagkov, L.E. Bykova, O.A. Bayukov, V.S. Zhigalov, I.A. Tambasov, S.M. Zharkov, A.A. Matsynin, and G.N. Bondarenko, J. Alloys Compds. 636, 223 (2015). https://doi.org/10.1016/j.jallcom.2015.02.012.

    Article  Google Scholar 

  28. V.G. Myagkov, V.S. Zhigalov, L.E. Bykova, S.M. Zharkov, A.A. Matsynin, M.N. Volochaev, I.A. Tambasov, and G.N. Bondarenko, J. Alloys Compds. 665, 197 (2016). https://doi.org/10.1016/j.jallcom.2015.12.257.

    Article  Google Scholar 

  29. C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, and L.D. Zhang, Adv. Mater. 13, 1330 (2001). https://doi.org/10.1002/1521-4095(200109)13:17%3c1330::AID-ADMA1330%3e3.0.CO;2-6.

    Article  Google Scholar 

  30. Z.-K. Tang, L.-M. Tang, D. Wang, L.-L. Wang, and K.-Q. Chen, EPL 97, 57006-1 (2012). https://doi.org/10.1209/0295-5075/97/57006.

    Article  Google Scholar 

  31. X. Meng, L. Tang, and J. Li, J. Phys. Chem. C 114, 17569 (2010). https://doi.org/10.1021/jp106767n.

    Article  Google Scholar 

  32. R. Mukherji, V. Mathur, A. Samariya, and M. Mukherji, JAN 2, 105 (2017). https://doi.org/10.22606/jan.2017.22003.

    Article  Google Scholar 

  33. N.H. Hong, J. Sakai, N.T. Huong, and V. Brizé, J. Magn. Magn. Mater. 302, 228 (2006). https://doi.org/10.1016/j.jmmm.2005.09.010.

    Article  Google Scholar 

  34. M.Z. Naik and A.V. Salker, Mater. Res. Innov. 21, 237 (2017). https://doi.org/10.1080/14328917.2016.1207044.

    Article  Google Scholar 

  35. Z. Li and Y. Dzenis, Talanta 85, 82 (2011). https://doi.org/10.1016/j.talanta.2011.03.033.

    Article  Google Scholar 

  36. Z. Wang, C. Hou, Q. De, F. Gu, and D. Han, ACS Sens. 3, 468 (2018). https://doi.org/10.1021/acssensors.7b00896.

    Article  Google Scholar 

  37. S.M. Zharkov, E.T. Moiseenko, R.R. Altunin, N.S. Nikolaeva, V.S. Zhigalov, and V.G. Myagkov, JETP Lett. 99, 405 (2014). https://doi.org/10.1134/S0021364014070145.

    Article  Google Scholar 

  38. E.T. Moiseenko, R.R. Altunin, and S.M. Zharkov, Phys. Solid State 59, 1233 (2017). https://doi.org/10.1134/S1063783417060154.

    Article  Google Scholar 

  39. S.M. Zharkov, E.T. Moiseenko, and R.R. Altunin, J. Solid State Chem. 269, 36 (2019). https://doi.org/10.1016/j.jssc.2018.09.009.

    Article  Google Scholar 

  40. R.R. Altunin, E.T. Moiseenko, and S.M. Zharkov, Phys. Solid State 60, 1413 (2018). https://doi.org/10.1134/S106378341807003X.

    Article  Google Scholar 

  41. S.M. Zharkov, R.R. Altunin, E.T. Moiseenko, G.M. Zeer, S.N. Varnakov, and S.G. Ovchinnikov, Solid State Phenom. 215, 144 (2014). https://doi.org/10.4028/www.scientific.net/SSP.215.144.

    Article  Google Scholar 

  42. W.M. Haynes, eds., CRC Handbook of Chemistry and Physics, 97th ed. (Boca Raton: CRC Press, 2016), p. 2670.

    Google Scholar 

  43. ADVENT Research Materials Ltd., Oxford, U.K. www.advent-rm.com.

  44. Powder Diffraction File (PDF 4+, 2018), Inorganic Phases Database, International Center for Diffraction Data (ICDD), Swarthmore, PA, USA. http://www.icdd.com/products/pdf4.htm

  45. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion Controlled Processes, Vol. 155 (Berlin: Springer, 2007), p. 651.

    Book  Google Scholar 

  46. J.M. Poate, K.N. Tuaaa, and J.W. Meyer, eds., Thin Films-Interdiffusion and Reaction (New York: Wiley, 1978), p. 578.

    Google Scholar 

  47. M. Garbrecht, B. Saha, J.L. Schroeder, L. Hultman, and T.D. Sands, Sci. Rep. 7, 46092-1 (2017). https://doi.org/10.1038/srep46092.

    Article  Google Scholar 

  48. A. Makovec, G. Erdélyi, and D.L. Beke, Thin Solid Films 520, 2362 (2012). https://doi.org/10.1016/j.tsf.2011.11.013.

    Article  Google Scholar 

  49. G. Molnár, G. Erdélyi, G.A. Langer, D.L. Beke, A. Csik, G.L. Katona, L. Daróczi, M. Kis-Varga, and A. Dudás, Vacuum 98, 70 (2013). https://doi.org/10.1016/j.vacuum.2013.04.015.

    Article  Google Scholar 

  50. D.L. Beke, Yu Kaganovskii, and G.L. Katona, Prog. Mater Sci. 98, 625 (2018). https://doi.org/10.1016/j.pmatsci.2018.07.001.

    Article  Google Scholar 

  51. A.I. Gusev and A. Rempel, Nanocrystalline Materials (Cambridge: Cambridge International Science, 2004), p. 351. ISBN: 978-1898326267

  52. J.H. Fendle, eds., Nanoparticles and Nanostructured Films: Preparation, Characterization, and Applications (Weinheim: Wiley, 2008), p. 488. ISBN 978-3-527-61206-2.

    Google Scholar 

Download references

Acknowledgements

The investigation was conducted under the partial financial support of the Russian Foundation for Basic Research (Grants #18-03-01173 and #19-43-240003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmila E. Bykova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykova, L.E., Zharkov, S.M., Myagkov, V.G. et al. In Situ Electron Diffraction Investigation of Solid State Synthesis of Co-In2O3 Ferromagnetic Nanocomposite Thin Films. JOM 72, 2139–2145 (2020). https://doi.org/10.1007/s11837-019-03919-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03919-5

Navigation