Skip to main content

Advertisement

Log in

Water Productivity of Selected Sorghum Genotypes Under Rainfed Conditions

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Water productivity (WP) is becoming a key issue in understanding the relationship between water availability and rainfed sorghum (Sorghum bicolor L. Moench) yields in agricultural systems across sub–Saharan Africa. The objective of this study was to determine water productivity of three sorghum genotypes under different environmental conditions. Three sorghum genotypes, a hybrid (PAN8816), a commercial open-pollinated variety (Macia) and a landrace (Ujiba) were planted at two sites (Ukulinga and Mbumbulu) in South Africa during 2013/2014 and 2014/2015. High clay content in Mbumbulu lowered plant available water in the soil compared to Ukulinga. Sorghum adapted to low water availability by significantly (P < 0.05) lowering plant growth (green leaf number, plant height and canopy cover), crop physiology (chlorophyll content index and stomatal conductance), biomass and grain yield. Ujiba and PAN8816 genotypes hastened phenological development, whilst Macia delayed phenological development in response to low water availability. Total and grain WP were lower at Mbumbulu (14.93 and 7.49 kg/ha/mm) relative to Ukulinga (21.49 and 11.01 kg/ha/mm), respectively. Results showed that Macia had significantly higher (P < 0.05) WP (10.51 kg/ha/mm) relative to PAN8816 (9.34 kg/ha/mm) and Ujiba (7.90 kg/ha/mm). Lack of significant genotypic differences in grain WP highlights that all three genotypes are equally suitable for production under sub–optimal and dryland conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Motagally, F. M. F. (2010). Evaluation of water productivity under different water regimes in grain sorghum (Sorghum bicolor, L. Moench). World Journal of Agricultural Sciences,6, 499–505.

    Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. Rome: Food and Agriculture Organization.

    Google Scholar 

  • Assefa, Y., Staggenborg, S. A., & Prasad, V. P. V. (2010). Grain sorghum water requirement and responses to drought stress: A review. Crop Management,9, 1–12.

    Article  Google Scholar 

  • Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research,56, 1159–1168.

    Article  Google Scholar 

  • Brauman, K., Siebert, S., & Foley, J. (2013). Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environmental Research Letters,8, 1–8.

    Article  Google Scholar 

  • Charyulu, C. D., Bantilan, M. C. S., Reddy, B. V., Kumar, A. A., Ahmed, I., & Davis, J. (2014). Estimation of ICRISAT sorghum research spillover benefits—strategies for research prioritization and resource allocation. Patancheru: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

    Google Scholar 

  • Chimonyo, V. G. P., Modi, A. T., & Mabhaudhi, T. (2016). Water use and productivity of a sorghum–cowpea–bottle gourdintercrop system. Agricultural Water Management,165, 82–96.

    Article  Google Scholar 

  • Du Plesis, J. (2008). Sorghum production. Department of Agriculture: Republic of South Africa, and Agricultural Research Council. Pretoria, South Africa.

  • Dugas, D. V., Monaco, M. K., Olson, A., Klein, R. R., Kumari, S., Ware, D., et al. (2011). Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics,12, 514.

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N., & Fujita, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy and Sustainable Development,29, 185–212.

    Article  Google Scholar 

  • Food and Agriculture Organization Statistics (FAOSTAT). (2013). FAO statistical yearbook 2013. World food and agriculture. Rome, Italy. http://faostat.fao.org/site/339/default.aspx. Accessed 10 Oct 2018.

  • Gambin, B. L., & Borras, L. (2005). Sorghum kernel weight: Growth patterns from different positions within the panicle. Crop Science,45, 553–561.

    Article  Google Scholar 

  • Giovannucci, D., Scherr, S., Nierenberg, D., Hebebrand, C., Shapiro, Milder, J. & Wheeler, K. (2012) Food and agriculture: The future of sustainability. Sustainable development in the 21st century (SD21) project. United Nations Department of Economic and Social Affairs, Division for Sustainable Development. New York, USA.

  • Gizzi, G., & Gambin, B. L. (2016). Eco-physiological changes in sorghum hybrids released in Argentina over the last 30 years. Field Crops Research,188, 41–49.

    Article  Google Scholar 

  • Hadebe, S. T., Modi, A. T., & Mabhaudhi, T. (2016). Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in Sub-Saharan Africa. Journal of Agronomy and Crop Science,203, 177–191.

    Article  Google Scholar 

  • Hadebe, S. T., Modi, A. T., & Mabhaudhi, T. (2017). Water use of sorghum (Sorghum bicolor L. Moench) in response to varying planting dates. Water SA,43(1), 91–103.

    Article  Google Scholar 

  • Hammer, G. L., Carberry, P. S., & Muchow, R. C. (1993). Modelling genotypic and environmental control of leaf area dynamics in grain sorghum. I. Whole plant level. Field Crops Research,33, 293–310.

    Article  Google Scholar 

  • Hsiao, T. C., & Xu, L.-K. (2000). Sensitivity of growth of roots versus leaves to water stress: Biophysical analysis and relation to water transport. Journal of Experimental Botany,51, 1595–1616.

    Article  CAS  Google Scholar 

  • Huda, A. K. S., Sivakurnar, M. V. K., Virmani, S. M., Seethararna, N., Singh, S., & Sekaran, J. G. (1984). Modelling the effect of environmental factors on sorghum growth and development (pp. 277–287). Patancheru: ICRISAT.

    Google Scholar 

  • Jewitt, G. W. P., Wen, H. W., Kunz, R. P., & Van Rooyen, A. M. (2009). Scoping Study on Water Use of Crops/Trees for Biofuels in South Africa. Water research commission (WRC) report no, 1772/1/09.

  • Kapanigowda, M. H., Perumal, R., Djanaguiraman, M., Aiken, R. M., Tesso, T., Prasad, P. V., et al. (2013). Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance. Springerplus, 2, 650.

    Article  Google Scholar 

  • Mabhaudhi, T. (2012) Drought tolerance and water use of selected South African landraces (Colocasia esculenta L. Schott) and bambara groundnut (Vigna subterranea L. Verdc). Ph.D. Thesis. University of KwaZulu-Natal, Pietermaritzburg, South Africa.

  • Mabhaudhi, T., & Modi, A. T. (2013). Growth, phenological and yield responses of a bambara groundnut (Vigna subterranea (L.) Verdc.) landrace to imposed water stress under field conditions. South African Journal of Plant and Soil,30, 69–79.

    Article  Google Scholar 

  • Mabhaudhi, T., Modi, A. T., & Beletse, Y. G. (2013). Growth, phenological and yield responses of a bambara groundnut (Vigna subterranea L. Verdc) landrace to imposed water stress: IL. Rain shelter conditions. Water SA,39, 191–198.

    Google Scholar 

  • Mabhaudhi, T., Modi, A. T., & Beletse, Y. G. (2014). Parameterisation and evaluation of the FAO-AquaCrop model for a South African taro (Colocasia esculenta L. Schott) landrace. Agricultural and Forest Meteorology,192–193, 132–139.

    Article  Google Scholar 

  • Maman, N., Lyon, D. J., Mason, S., Galusha, T. D., & Higgins, R. (2003). Pearl millet and grain sorghum yield response to water supply in Nebraska. Agronomy Journal,95, 1618–1624.

    Article  Google Scholar 

  • McMaster, G. S., & Wilhelm, W. W. (1997). Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology,87, 291–300.

    Article  Google Scholar 

  • Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M. A., & Kijne, J. (2010). Improving agricultural water productivity: Between optimism and caution. Agricultural Water Management,97, 528–535.

    Article  Google Scholar 

  • Murray, S. J., Foster, P. N., & Prentice, I. C. (2012). Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. Journal of Hydrology,448–449, 14–29.

    Article  Google Scholar 

  • Postel, S. L. (2003). Securing water for people, crops, and ecosystems: New mindset and new priorities. Natural Resources Forum,27, 89–98.

    Article  Google Scholar 

  • Promkhambut, A., Polthanee, A., Akkasaeng, C., & Younger, A. (2011). Growth, yield and aerenchyma formation of sweet and multipurpose sorghum (Sorghum bicolor L. Moench) as affected by flooding at different growth stages. Australian Journal of Agricultural Research,5, 954–965.

    Google Scholar 

  • Richards, R. A. (2000). Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany,51, 447–458.

    Article  CAS  Google Scholar 

  • Ridolfi, L., D’odorico, P., Laio, F., Tamea, S., & Rodriguez-Iturbe, I. (2008). Coupled stochastic dynamics of water table and soil moisture in bare soil conditions. Water Resource Research,44, 1–11.

    Article  Google Scholar 

  • Ringler, C., Zhu, T., Cai, X., Koo, J., & Wang, D. (2010). Climate change impacts on food security in Sub-Saharan Africa: Insights from comprehensive climate change scenarios, food policy (pp. 15–20). Washington: International Food Policy Research Institute (IFPRI) Research Brief.

    Google Scholar 

  • Rosegrant, M. W., Ringler, C., & Zhu, T. (2009). Water for agriculture: Maintaining foods under growing scarcity. Annual Review of Environment and Resources,34, 205–222.

    Article  Google Scholar 

  • Rosenow, D. T., & Dahlberg, J. A. (2000). Collection, conversion and utilisation of sorghum. In C. W. Smith & R. A. Frederiksen (Eds.), Sorghum—origin, history, technology and production (pp. 309–328). New York: Wiley.

    Google Scholar 

  • Sadras, V. O., Grassini, P., & Steduto, P. (2013). Status of water use efficiency of main crops. SOLAW Background Thematic Report—TR07 (Vol. 2013). Rome: Food and Agriculture Organization.

    Google Scholar 

  • Silva, C., Ferreira, A., Gonzaga, W., Galon, L., Petter, F. A., May, A., et al. (2014). Weed interference in the sweet sorghum crop. Bragantia Campinas,73, 438–445.

    Article  Google Scholar 

  • Singh, P., Wani, S.P., Pathak, P., Sahrawat, K.L. & Singh, A.K. (2011) Increasing crop productivity and effective use of water in rainfed agriculture. In: Integrated watershed management in rainfed agriculture. (pp. 315–347). London: CRC Press (Taylor & Francis).

  • Smith, B. (2006). The farming handbook (pp. 288–290). Pietermaritzburg: University of KwaZulu Natal Press.

    Google Scholar 

  • Takele, A., & Farrant, J. (2013). Water relations, gas exchange characteristics and water productivity in maize and sorghum after exposure to and recovery from pre and post-flowering dehydration. African Journal of Agricultural Research,8, 6468–6478.

    Google Scholar 

  • Tombesi, S., Nardini, A., Frioni, T., Soccolini, M., Zadra, C., Farinelli, D., et al. (2015). Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Scientific Reports,5, 12449.

    Article  Google Scholar 

  • van Oosterom, E. J., & Hammer, G. L. (2008). Determination of grain number in sorghum. Field Crops Research,108, 259–268.

    Article  Google Scholar 

  • Whitmore, A. P., & Whalley, W. R. (2009). Physical effects of soil drying on roots and crop growth. Journal of Experimental Botany,60, 2845–2857.

    Article  CAS  Google Scholar 

  • Zhao, C., Feng, Z., & Chen, G. (2004). Soil water balance simulation of alfalfa (Medicago sativa L.) in the semiarid Chinese Loess Plateau. Agricultural Water Management,69, 101–114.

    Article  Google Scholar 

Download references

Acknowledgements

The Water Research Commission (WRC) of South Africa is acknowledged for initiating, funding and directing the study through WRC Project No. K5/2274//4 ‘Determining water use of indigenous grain and legume food crops” and WRC Project No. K5/2493//4 ‘Water use and nutritional water productivity for improved health and nutrition in poor rural households’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandile T. Hadebe.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadebe, S.T., Mabhaudhi, T. & Modi, A.T. Water Productivity of Selected Sorghum Genotypes Under Rainfed Conditions. Int. J. Plant Prod. 14, 259–272 (2020). https://doi.org/10.1007/s42106-019-00082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-019-00082-4

Keywords

Navigation