Skip to main content
Log in

Induction of growth and antioxidant defense mechanisms in Matricaria chamomilla L. callus by vibration

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Effect of sinusoidal vibration on the activity of some antioxidative enzymes, pigments, membrane stability, and total phenolic was investigated in callus tissues of Matricaria chamomilla L. Two calli sources were initiated from leaf and root explants, and different frequencies of sinusoidal vibration (0, 5, 10, 15, 50, and 100 Hz) for 3 min were applied to stimulate callus tissues of M. chamomilla. According to the obtained findings in two calli of Matricaria chamomilla, enhancement of growth by vibration was observed at 15 and 50 Hz. Improvement of growth by vibration can be explained by induction in protein, proline total phenol contents, superoxide dismutase, peroxidase, catalase and ascorbate peroxidase activities, reduction in malondialdehyde, and hydrogen peroxide levels. Carotenoid significantly augmented at 15 and 50 Hz frequencies. The electrophoresis profile showed different isoform patterns, and the intensity of bands was promoted by vibration. Moreover, a new superoxide dismutase band appeared at 15 and 50 Hz frequencies in leaf calli. These results may provide insight into antioxidant defense mechanisms of callus tissue to vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Abeles FB, Biles CL (1991) Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiol 95:269–273

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Alhdad GM, Seal C, Al-Azzawi MJ, Flowers TJ (2013) The effect of combined salinity and waterlogging on the halophyte Suaeda maritima: the role of antioxidants. Environ Exp Bot 87:120–125

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Azooz MM, Youssef MM (2010) Evaluation of heat shock and salicylic acid treatments as inducers of drought stress tolerance in Hassawi wheat. Am J Plant Physiol 5(2):56–70

    Article  CAS  Google Scholar 

  • Bates LS, Waldern RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bochu W, Xuefeng L, Yiyao L, Chuanren D, Sakanishi A (2002) The effects of mechanical vibration on the microstructure of Gerbera jamesonii acrocarpous callus. Colloids Surf B: Biointerfaces 23:1–5

    Article  Google Scholar 

  • Bors W, Michel C, Stettmaier K (2001) Structure-activity relationships governing antioxidant capacities of plant polyphenols. Methods Enzymol 335:166–180

    Article  CAS  Google Scholar 

  • Braam J (2004) In touch: plant response to mechanical stimuli. New Phytol 165:373–389

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

  • Chen YP, Liu Q, Yue XZ, Meng ZW, Liang J (2013) Ultrasonic vibration seeds showed improved resistance to cadmium and lead in wheat seedling. Environ Sci Pollut Res 20:4807–4816

    Article  CAS  Google Scholar 

  • Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Dobránszki J, Asbóth G, Homoki D, Bíró-Molnár P, da Silva JA, Remenyik J (2017) Ultrasonication of in vitro potato single node explants: activation and recovery of antioxidant defence system and growth responses. Plant Physiol Biochem 121:153–160

    Article  CAS  Google Scholar 

  • Gawlik-Dziki U, Świeca M, Dziki D (2012) Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt (Triticum spelta L.). J Agric Food Chem 60:4603–4612

    Article  CAS  Google Scholar 

  • Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW, Park SC, Jeong M, Bae H (2016) Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis. Sci Rep 6:33370

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol 59:315–318

    Article  CAS  Google Scholar 

  • Guo YY, Zhang WH, He JF, Zhou JY, Yu HY (2012) Effect of water stress and seed mass on germination and antioxidative enzymes of Xanthoceras sorbifolia. Afr J Biotechnol 18:4187–4195

    Google Scholar 

  • Hassanpour H, Niknam V, Haddadi (2017) High-frequency vibration improve callus growth via antioxidant enzymes induction in Hyoscyamus kurdicus. Plant Cell Tissue Organ Cult 128:231–241

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hichem H, Mounir D, Naceur A (2009) Differential responses of two maize varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crop Prod 30:144–151

    Article  CAS  Google Scholar 

  • Jebara S, Jebara M, Limam F, Elarbi Aouani M (2005) Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J Plant Physiol 162:929–936

    Article  CAS  Google Scholar 

  • Kang D, Zhang H, Zeng Q, Mo X, Wang Y, Yang D (2011) Response of Camptotheca acuminata calli stimulated by mechanical vibration. Acta Physiol Plant 33:711–716

    Article  Google Scholar 

  • Kim HP, Son KH, Chang HW, Kang SS (2004) Anti-inflammatory plant flavonoids and cellular action mechanisms. J Pharmacol Sci 96:229–245

    Article  CAS  Google Scholar 

  • Kirk JTO, Allen RL (1965) Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochem Biophys Res Commun 21:523–530

    Article  CAS  Google Scholar 

  • Koca H, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lee DL, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L). J Plant Physiol 158:737–745

    Article  CAS  Google Scholar 

  • Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plant development. Amino Acids 39:949–962

    Article  CAS  Google Scholar 

  • Li ZG, Gong M (2013) Mechanical stimulation-induced chilling tolerance in tobacco suspension cultured cells and its relation to proline. Russ J Plant Physiol 60:149–154

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wenzel O, Buschmann C, Gitelson A (1998) Plant stress detection by reflectance and fluorescence. Ann N Y Acad Sci 851:271–285

    Article  Google Scholar 

  • Lin ZF, Zhong SL, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  CAS  Google Scholar 

  • Mak P, Leuny YK, Tang WY, Harwood C, Ho SM (2006) Apigenin suppresses cancer cell growth through ERβ. Neoplasia 8:896–904

    Article  CAS  Google Scholar 

  • Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiol 133:499–509

    Article  CAS  Google Scholar 

  • Meng Q, Zhou Q, Zheng S, Gao Y (2012) Responses on photosynthesis and variable chlorophyll fluorescence of Fragaria ananassa under sound wave. Energy Procedia 16:346–352

    Article  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Monshausen GB, Gilroy S (2009) Feeling green: mechanosensing in plants. Trends Cell Biol 19:228–235

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. J Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ozkurt H, Altuntas O (2018) Quality parameter levels of strawberry fruit in response to different sound waves at 1000 Hz with different dB values (95, 100, 105 dB). Agron 8:127

    Article  CAS  Google Scholar 

  • Pourghayoumi M, Rahemi M, Bakhshi D, Aalami A, Kamgar-Haghighi AA (2017) Responses of pomegranate cultivars to severe water stress and recovery: changes on antioxidant enzyme activities, gene expression patterns and water stress responsive metabolites. Physiol Mol Biol Plants 23(2):321–330

    Article  CAS  Google Scholar 

  • Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci 109:5535–5540

    Article  CAS  Google Scholar 

  • Rezayian M, Niknam V, Ebrahimzadeh H (2018) Positive effects of Penconazole on growth of Brassica napus under drought stress. Arch Agron Soil Sci 64:1791–1806

    Article  CAS  Google Scholar 

  • Singleton VL, Rosi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Strzałka K, Kostecka-Gugała A, Latowski D (2003) Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. Russ J Plant Physiol 50:168–173

    Article  Google Scholar 

  • Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  Google Scholar 

  • Van Loon LC, Geelen JLMC (1971) The relation of polyphenol oxidase and peroxidase to symptom expression in tobacco var. ‘Samsun NN’ after infection with tobacco mosaic virus. Acta Phytopathol Acad Sci Hung 6:9–20

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  CAS  Google Scholar 

  • Wang XJ, Wang BC, Jia Y, Huo DQ, Duan CR (2003) Effect of sound stimulation on cell cycle of chrysanthemum (Gerbera jamesonii). Colloids Surf B: Biointerfaces 29:103–107

    Article  CAS  Google Scholar 

  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  CAS  Google Scholar 

  • Yang XC, Wang BC, Liu YY, Duan CR, Dai CY (2002) Biological effects of Actinidia chinensis callus on mechanical vibration. Colloids Surf B: Biointerfaces 25:197–203

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the Aerospace Research Institute of Iran for the research funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Halimeh Hassanpour or Vahid Niknam.

Additional information

Editor: Yong Eui Choi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salami, S., Hassanpour, H. & Niknam, V. Induction of growth and antioxidant defense mechanisms in Matricaria chamomilla L. callus by vibration. In Vitro Cell.Dev.Biol.-Plant 56, 644–651 (2020). https://doi.org/10.1007/s11627-020-10081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-020-10081-0

Keywords

Navigation