Skip to main content
Log in

Granitoid Anorogenic Magmatism of the Yenisei Range: Evidence of Lithospheric Extension in the Western Part of the Siberian Craton

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

Reproducing the geological evolution of the Yenisei Range is important not only to understand how mobile belts at boundaries between ancient cratons tectonically evolved but also to gain an insight into how the Siberian craton was incorporated into the Nuna and Rodinia supercontinents. The paper presents geological, geochemical, and isotope geochronologic evidence of Meso- to Neoproterozoic events in the western margin of the Siberian craton and demonstrates that multiple pulses of intraplate magmatism occurred during the late evolution of the Yenisei Range. The rocks produced by these processes crystallized from high-temperature and hydrous magmas, which were rich in alkalis, iron, and most incompatible elements, as is typical of A-type anorogenic granites in intraplate environments. According to U–Pb zircon and monazite dates, the emplacement age of the granites is constrained between two peaks at 1380–1360 and 800–720 Ma. These magmatic events well correlate with the breakup ages of the Precambrian Nuna and Rodinia supercontinents and provide evidence that the Siberia was close to the North-Atlantic cratons (Laurentia and Baltica) during a long time span starting at 1.38 till 0.72 Ga, which is consistent with modern paleomagnetic reconstructions of the position of the supercontinents and the age spans when LIPS were formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. A. Ariskin, Y. A. Kostitsyn, G. S. Nikolaev, E. G. Konnikov, L. V. Danyushevsky, S. Meffre, A. McNeill, E. V. Kislov, and D. A. Orsoev, “Geochronology of the Dovyren intrusive complex, northwestern Baikal area, Russia, in the Neoproterozoic,” Geochem. Int. 51 (11), 859–875 (2013).

    Article  Google Scholar 

  2. F. Barker, “Trondhjemite: definition, environment and hypotheses of origin,” Trondhjemites, Dacites and Related Rocks, Ed. by F. Barker (Elsevier, Amsterdam, 1979), pp. 1–12.

    Google Scholar 

  3. T. B. Bayanova, Age of the Reference Geological Complexes of the Kola Region and Duration of Magmatism (Nauka, St. Petersburg, 2004) [in Russian].

  4. B. Bonin, “From orogenic to anorogenic settings: evolution of granite suites after a major orogenesis,” Geol. J. 25, 261–270 (1990).

    Article  Google Scholar 

  5. A. Bouvier, J. D. Vervoort, and P. J. Patchett, “The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets,” Earth Planet. Sci. Lett. 273 (1–2), 48–57 (2008).

    Article  Google Scholar 

  6. W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  7. P. A. Cawood, R. Strachan, K. Cutts, P. D. Kinny, M. Hand, and S. Pisarevsky, “Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic,” Geology 38(2), 99–102 (2010).

    Article  Google Scholar 

  8. P. A. Cawood, A. A. Nemchin, R. A. Strachan, P. D. Kinny, and S. Loewy, “Laurentian provenance and an intracratonic tectonic setting for the upper Moine Supergroup, Scotland, constrained by detrital zircons from the Loch Eil and Glen Urquhart successions,” J. Geol. Soc. London 161, 861–874 (2004).

    Article  Google Scholar 

  9. P. A. Cawood, R. A. Strachan, S. A. Pisarevsky, D. P. Gladkochub, and J. B. Murphy, “Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles,” Earth Planet. Sci. Lett. 449, 118–126 (2016).

    Article  Google Scholar 

  10. D. P. Gladkochub, T. V. Donskaya, A. M. Mazukabzov, A. M. Stanevich, E. V. Sklyarov, and V. A. Ponomarchuk, “Signature of Precambrian extension events in the southern Siberian Craton,” Russ. Geol. Geophys. 48(1), 17–31 (2007).

    Article  Google Scholar 

  11. R. Dall’Agnol, O. T. Rämö, M. S. Magalhaes, and M. J. B. Macambira, “Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian Craton: implications for the genesis of Proterozoic A-type granites,” Lithos 46, 431–462 (1999).

    Article  Google Scholar 

  12. V. M. Datsenko, Granitoid Magmatism of the Southwestern Surrounding of the Siberian Platform (Nauka, Novosibirsk, 1984) [in Russian]. A. E. Diner, “Preriphean basite volcanism of the northern Yenisei Ridge, Problems of Stratigraphy and Magmatism of the Krasnoyarsk Krai and Tuva ASSR, (PGO Krasnoyarskgeologiya, Krasnoyarsk, 1990), pp. 81–87 [in Russian].

  13. N. L. Dobretsov, “Global geodynamic evolution of the Earth and global geodynamic model,” Russ. Geol. Geophys. 51 (6), 592–610 (2010).

    Article  Google Scholar 

  14. G. N. Eby, “Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications,” Geology 20, 641–644 (1992).

    Article  Google Scholar 

  15. A. S. Egorov, Deep Structure and Geodynamics of Lithosphere of northern Eurasia: Results of Geological-Geophysical Modeling along Russia’s Geotraverses (VSEGEI, St. Petersburg, 2004) [in Russian]

    Google Scholar 

  16. R. E. Ernst and M. A. Hamilton, “725-Ma U–Pb baddeleyite age of the Dovyren intrusion, Siberia: correlation with giant 723-Ma Franklin igneous province of northern Laurentia,” Proceedings of Conference on “Geology of the Polar Areas of the Earth, Moscow, Russia (Moscow, 2009), pp, 330–332 [in Russian].

  17. R. E. Ernst, M. T. D. Wingate, K. L. Buchan, and Z. H. Li, “Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents,” Precambrian Res. 160, 159–178 (2008).

    Article  Google Scholar 

  18. R. E. Ernst, M. A. Hamilton, U. Soderlund, J. A. Hanes, D. P. Gladkochub, A. V. Okrugin, T. Kolotilina, A. S. Mekhonoshin, W. Bleeker, A. N. LeCheminant, K. L. Buchan, K. R. Chamberlain, and A. M. Didenko, “Long–lived connection between southern Siberia and northern Lavrentia in the Proterozoic,” Nature Geosc. 9, 464–469 (2016).

    Article  Google Scholar 

  19. D. A. D. Evans and R. N. Mitchell, “Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna,” Geology 39, 443–446 (2011).

    Article  Google Scholar 

  20. B. R. Frost, C. G. Barnes, W. J. Collins, R. J. Arculus, D. J. Ellis, and C. D. Frost, “A geochemical classification for granitic rocks,” J. Petrol. 42, 2033–2048 (2001).

    Article  Google Scholar 

  21. G. V. Polyakov, N. D. Tolstykh, A. S. Mekhonoshin, A. E. Izokh, M. Yu. Podlipskii, D. A. Orsoev, and T. B. Kolotilina, “Ultramafic-mafic igneous complexes of the Precambrian East Siberian metallogenic province (southern framing of the Siberian craton): age, composition, origin, and ore potential,” Russ. Geol. Geophys. 54 (11), 1319–1331 (2013).

    Article  Google Scholar 

  22. D. P. Gladkochub, S. A. Pisarevsky, T. V. Donskaya, R. E. Ernst, M. T. D. Wingate, U. Söderlund, A. M. Mazukabzov, E. V. Sklyarov, M. A. Hamilton, and J. A. Hanes, “Proterozoic mafic magmatism in Siberian craton: an overview and implications for paleocontinental reconstruction,” Precambrian Res. 183, 660–668 (2010).

    Article  Google Scholar 

  23. D. P. Gladkochub, T. V. Donskaya, R. Ernst, A. M. Mazukabzov, E. V. Sklyarov, S. A. Pisarevsky, M. Wingate, and U. Söderlund, “Proterozoic basic magmatism of the Siberian Craton: main stages and their geodynamic interpretation,” Geotectonics 20 (4), 273–284 (2012).

    Article  Google Scholar 

  24. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr isotopic systematic of river water suspended material implications for crystal evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  25. S. S. Harlan, M. T. D. Wingate, A. N. LeCheminant, and W. R. Premo, “Gunbarrel mafic magmatic event: a key 780Ma time marker for Rodinia plate reconstructions,” Geology 31, 1053–1056 (2003).

    Article  Google Scholar 

  26. S. S. Harlan, J. W. Geissman, and L.W. Snee, “Paleomagnetism of Proterozoic mafic dikes from the Tobacco Root Mountains, southwest Montana,” Precambrian Res. 163, 239–264 (2008).

    Article  Google Scholar 

  27. L. M. Heaman, A. N. LeCheminant, and R. H. Rainbird, “Nature and timing of Franklin igneous event, Canada: implications for a Late Proterozoic mantle plume and the break-up of Laurentia,” Earth Planet. Sci. Lett. 109, 117–131 (1992).

    Article  Google Scholar 

  28. S. N. Ivanov, “Baikalides of the Urals and Siberia,” Geotektonika 5, 47–65.

  29. Å. Johansson, “From Rodinia to Gondwana with the ‘SAMBA’ model–A distant view from Baltica towards Amazonia and beyond,” Precambrian Res. 244, 226–235 (2014).

    Article  Google Scholar 

  30. L. K. Kachevsky, G. I. Kachevskaya, A. A. Storozhenko, V. K. Zuev, A. E. Diner, and N. F. Vasil’ev, “On question of distinguishing the Archean metamorphic complexes in the Transangarian part of the Yenisei Ridge,” Otechetvennaya Geol. 11, 45–49 (1994).

    Google Scholar 

  31. L. K. Kachevsky, G. I. Kachevskaya, and V. K. Zuev, On question of distinguishing new (Shumikha) basite–ultrabasite subvolcanic complex in Transangaria, Yenisei Ridge, in Problems of Stratigraphy and Magmatism of the Krasnoyarsk Krai and Tuva ASSR, (PGO Krasnoyarskgeologiya, Krasnoyarsk, 1990), pp. 78–80 [in Russian].

  32. Yu. A. Kuznetsov, Major Types of Magmatic Formations (Nedra, Moscow, 1964) [in Russian].

    Google Scholar 

  33. A. M. Larin, A. B. Kotov, S. D. Velikoslavinskii, E. B. Sal’nikova, and V. P. Kovach, “Early Precambrian A-granitoids in the Aldan Shield and adjacent mobile belts: sources and geodynamic environments,” Petrology 20 (3), 218–239 (2012).

    Article  Google Scholar 

  34. A. N. Larionov, V. A. Andreichev, and D. G. Gee, “The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite,” The Neoproterozoic Timanide Orogen of Eastern Baltica, Ed. by D. G. Gee and V. L.Pease, Geol. Soc. London Mem. 30, 69–74 (2004).

  35. X. H. Li, Z. H. Li, H. Zhou, Y. Liu, and P. D. Kinny, “U–Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kandigan Rift of South China: implications for the initial rifting of Rodinia,” Precambrian Res. 113, 135–154 (2002).

    Article  Google Scholar 

  36. Z.-H. Li, S. V. Bogdanova, A. S. Collins, A. Davidson, B. De Waele, R. E. Ernst, I. C. W. Fitzsimons, R. A. Fuck, D. P. Gladcochub, J. Jacobs, K. E. Karlstrom, S. Lu, L. M. Natapov, V. Pease, S. A. Pisarevsky, K. Thrane, and V. Vernikovsky, “Assembly, configuration, and break–up history of Rodinia: a synthesis,” Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  37. I. I. Likhanov, “Mass-transfer and differential element mobility in metapelites during multistage metamorphism of Yenisei Ridge, Siberia,” Metamorphic Geology: Microscale to Mountain Belts, Ed. by S. Ferrero, P. Lanari, P. Gonsalves, and E. G. Grosch, Geol. Soc. London, Spec. Publ. 478, 89–115 (2019).

  38. I. I. Likhanov and V.V. Reverdatto, “Precambrian Fe- and Al-rich pelites from the Yenisey Ridge, Siberia: geochemical signatures for protolith origin and evolution during metamorphism,” Int. Geol. Rev. 50 (7), 597–623 (2008).

    Article  Google Scholar 

  39. I. I. Likhanov, and V. V. Reverdatto, “P–T–t constraints on the metamorphic evolution of the Transangarian Yenisei Ridge: geodynamic and petrological implications,” Russ. Geol. Geophys. 55 (3), 385–416 (2014).

    Article  Google Scholar 

  40. I. I. Likhanov and M. Santosh, “Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: implications for breakup of the Rodinia supercontinent,” Precambrian Res. 300, 315–331 (2017).

    Article  Google Scholar 

  41. I. I. Likhanov and M. Santosh, “A-type granites in the western margin of the Siberian Craton: implications for breakup of the Precambrian supercontinents Columbia/Nuna and Rodinia,” Precambrian Res. 328, 128–145 (2019).

    Article  Google Scholar 

  42. I. I. Likhanov, V. V. Reverdatto, V. S. Sheplev, A. E. Verschinin, and P. S. Kozlov, “Contact metamorphism of Fe- and Al-rich graphitic metapelites in the Transangarian Region of the Yenisey Ridge, eastern Siberia, Russia,” Lithos 58(1–2), 55–80 (2001).

    Article  Google Scholar 

  43. I. I. Likhanov, O. P. Polyansky, V. V. Reverdatto, and I. Memmi, “Evidence from Fe- and Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisey Ridge, eastern Siberia,” J. Metamorph. Geol. 22(8), 743–762 (2004).

    Article  Google Scholar 

  44. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and N. V. Popov, “Collision metamorphism of Precambrian complexes in the Transangarian Yenisei Range,” Petrology 16 (2), 136–160 (2008).

    Article  Google Scholar 

  45. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, and N. V. Popov, “Kyanite–sillimanite metamorphism of the Precambrian complexes, Transangarian region of the Yenisei Ridge,” Russ. Geol. Geophys. 50 (12), 1034–1051 (2009).

    Article  Google Scholar 

  46. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and V. P. Sukhorukov, “Three metamorphic events in the Precambrian PTt history of the Transangarian Yenisey Ridge recorded in garnet grains in metapelites,” Petrology 21(6), 561–578 (2013).

    Article  Google Scholar 

  47. I. I. Likhanov, A. D. Nozhkin, V. V. Reverdatto, and P. S. Kozlov, “Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian Craton,” Geotectonics 48(5), 371–389 (2014).

    Article  Google Scholar 

  48. I. I. Likhanov, V. V. Reverdatto, P. S. Kozlov, V. V. Khiller, and V. P. Sukhorukov, “P–T–t constraints on polymetamorphic complexes of the Yenisey Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions,” J. Asian Earth Sci. 113 (1), 391–410 (2015).

    Article  Google Scholar 

  49. I. I. Likhanov, A. D. Nozhkin and K. A. Savko, “Accretionary tectonics of rock complexes in the western margin of the Siberian Craton,” Geotectonics 52(1), 22–44 (2018).

    Article  Google Scholar 

  50. I. I. Likhanov, J.-L. Régnier, and M. Santosh, “Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean,” Lithos 304–307, 468–488 (2018).

    Article  Google Scholar 

  51. L. I. Lobkovsky, A. M. Nikishin, and V. E. Khain, Modern Problems of Geotectonics and Geodynamics (Nauchn. Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  52. K. R. Ludwig, “User’s manual for Isoplot/Ex, Version 2.10. A geochronological toolkit for Microsoft Excel,” Berkeley Isochronol. Spec. Publ. 1, (1999) 46 p.

  53. K. R. Ludwig, “SQUID 1.00. User’s manual,” Berkeley Isochronol. Spec. Publ. 2, (2000).

  54. H. Martin, “Effect of stepper Archean geothermal gradients on geochemistry of subduction-related magmas,” Geology 14, 753–756 (1986).

    Article  Google Scholar 

  55. M. A. Meschide, “A method of discriminating between different types of mid ocean rigde basalts and continental tholeites with Nb–Zr–Y diagram,” Chem. Geol. 56, 207–218 (1986).

    Article  Google Scholar 

  56. D. V. Metelkin, V. A. Vernikovsky, and A. Yu. Kazansky, “Tectonic evolution of the Siberian paleocontinent from the Neoproterozoic to the Late Mesozoic: paleomagnetic record and reconstructions,” Russ. Geol. Geophys. 53 (7), 675–688 (2012).

    Article  Google Scholar 

  57. E. A. K. Middlemost, Magmas and Magmatic Rocks (Longman Group Ltd., Essex, 1985).

    Google Scholar 

  58. G. L. Mitrofanov, T. V. Mordovskaya, and F. V. Nikol’skii, “Piling structures of some marginal parts of the Siberian Platform,” Platform Tectonics (Nauka, Novosibirsk, 1988), pp. 169–173 [in Russian].

    Google Scholar 

  59. A. D. Nozhkin, O. M. Turkina, T. B. Bayanova, N. G. Berezhnaya, A. N. Larionov, A. A. Postnikov, A. V. Travin, and R. E. Ernst, “Neoproterozoic rift and within-plate magmatism in the Yenisei Ridge: implications for the breakup of Rodinia,” Russ. Geol. Geophys. 49 (7), 503–519 (2008).

    Article  Google Scholar 

  60. J. A. Pearce, “Sources and settings of granitic rocks,” Episodes 19 (4), 120–125 (1996).

    Article  Google Scholar 

  61. S. A. Pisarevsky, L. M. Natapov, T. V. Donskaya, D. P. Gladkochub, and V. A. Vernikovsky, “Proterozoic Siberia: a promontory of Rodinia,” Precambrian Res. 160, 66–76 (2008).

    Article  Google Scholar 

  62. V. N. Puchkov, S. V. Bogdanova, R. E. Ernst, V. I. Kozlov, A. A. Krasnobaev, U. Soderlund, M. T. D. Wingate, A. V. Postnikov, and N. D. Sergeeva, “The ca. 1380 Ma Mashak igneous event of the Southern Urals,” Lithos 174, 109–124 (2013).

    Article  Google Scholar 

  63. I. Raczeck, K. P. Jochum, and A. W. Hofmann, “Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP–2 and eight MPI-DING reference glasses,” Geostand. Geoanalyt. Research. 27, 173–179 (2003).

    Article  Google Scholar 

  64. V. V. Reverdatto, I. I. Likhanov, O. P. Polyansky, V. S. Sheplev, and V. Yu. Kolobov, “The nature and models of metamorphism,” (Springer, Chum, 2019).

  65. S. Rino, Y. Kon, W. Sato, S. Maruyama, M. Santosh, and D. Zhao, “The Grenvillian and Pan–African orogens: world’s largest orogenies through geological time, and their implications on the origin of superplume,” Gondwana Res. 14, 51–72 (2008).

    Article  Google Scholar 

  66. Yu. L. Ronkin, A. V. Maslov, A. P. Kazak, D. I. Matukov, and O. P. Lepikhina, “The Lower–Middle Riphean boundary in the Southern Urals: new isotopic U–Pb (SHRIMP II) constraints,” Dokl. Earth Sci. 415A (6), 835–840 (2007).

    Article  Google Scholar 

  67. A. S. Salnikov, Seismological Structure of the Crust of Platform and Fold Areas of Siberia: Data on Regional Seismic Refracted Wave Studies (SNIIGGiMS, Novosibirsk, 2009) [in Russian].

  68. K. Stewart and N. Rogers, “Mantle plume and lithosphere contributions to basalts from southern Ethiopia,” Earth Planet. Sci. Lett. 139, 195–211 (1996).

    Article  Google Scholar 

  69. S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Geol. Soc. Spec. Publ. 42, 313–345 (1989).

    Article  Google Scholar 

  70. T. Tanaka, S. Togashi, H. Kamioka, H. Amakawa, H. Kagami, T. Hamamoto, M. Yuhara, Y.Orihashi, S. Yoneda, H. Shimizu, T. Kunimaru, K. Takahashi, T. Yanagi, T. Nakano, H. Fujimaki, R. Shinjo, Y. Asahara, M. Tanimizu, and C. Dragusanu, “JNdi–1: a neodymium isotopic reference in consistency with LaJolla neodymium,” Chem. Geol. 168, 279–281 (2000).

    Article  Google Scholar 

  71. T. H. Torsvik, “The Rodinia Jigsaw puzzle, Science300, 1379–1381 (2003).

    Article  Google Scholar 

  72. V. A. Vernikovsky and A.E. Vernikovskaya, “Tectonics and evolution of granitoid magmatism in the Yenisei Ridge,” Russ. Geol. Geophys. 47 (1), 32–50 (2006).

    Google Scholar 

  73. V. A. Vernikovsky, A. E. Vernikovskaya, E. B. Sal’nikova, N. G. Berezhnaya, A. N. Larionov, A. B. Kotov, V. P. Kovach, I. V. Vernikovskaya, N. Yu. Matushkin, and A. M. Yasenev, “Late Riphean alkaline magmatism in the western framework of the Siberian Craton: a result of continental rifting or accretionary events?” Dokl. Earth Sci. 419 (1), 226–230 (2008).

    Article  Google Scholar 

  74. V. A. Vernikovsky, A. Yu. Kazansky, N. Yu. Matushkin, D. V. Metelkin, and J. K. Sovetov, “The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: ecological, structural, sedimentological, geochronological, and paleomagnetic data,” Russ. Geol. Geophys. 50 (4), 372–387 (2009).

    Article  Google Scholar 

  75. V. V. Vrublevskii, V. V. Reverdatto, A. E. Izokh, I. F. Gertner, D. S. Yudin, and P. A. Tishin, “Neoproterozoic carbonatite magmatism of the Yenisei Ridge, Central Siberia: 40Ar/39Ar geochronology of the Penchenga rock complex,” Dokl. Earth Sci. 437 (4), 443–448 (2011).

    Article  Google Scholar 

  76. E. B. Watson and T. M. Harrison, “Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types,” Earth Planet. Sci. Lett. 64, 295–304 (1983).

    Article  Google Scholar 

  77. J. B. Whalen, K. L. Currie, and B. W. Chappel, “A-type granites: geochemical characteristics and petrogenesis,” Contrib. Miner. Petrol. 95, 407–419 (1987).

    Article  Google Scholar 

  78. I. S. Williams, “U-Th-Pb geochronology by ion-microprobe,” Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Ed. by M. A. McKibben, W. C. Shanks III, and W. I. Ridley, Rev. Econ. Geol. 7, 1–35 (1998).

    Google Scholar 

  79. B. F. Windley, The Evolving Continents, (Wiley & Sons Inc, New York, 1998).

    Google Scholar 

  80. D. A. Wood, “The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).

    Article  Google Scholar 

  81. V. V. Yarmolyuk, V. I. Kovalenko, E. B. Sal’nikova, A. V. Nikiforov, A. B. Kotov, and N. V. Vladykin, “Late Riphean rifting and breakup of Laurasia: data on geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian Craton,” Dokl. Earth Sci. 404 (3), 1031–1036 (2005).

    Google Scholar 

  82. V. V. Yarmolyuk, V. I. Kovalenko, I. V. Anisimova, E. B. Sal’nikova, V. P. Kovach, I. K. Kozakov, A. M. Kozlovsky, E. A. Kudryashova, A. B. Kotov, Yu. V. Plotkina, L. B. Terent’eva, and S. Z. Yakovleva, “Late Riphean alkali granites of the Zabhan microcontinent: evidence for the timing of Rodinia breakup and formation of microcontinents in the Central Asian Fold Belt,” Dokl. Earth Sci. 420 (4), 583–588 (2008).

    Article  Google Scholar 

  83. J.-X. Zhao, M. T. McCulloch, and R. J. Korsch, “Characterization of a plume–related ~800 Ma magmatic event and its implications for basin formation in central–southern Australia,” Earth Planet. Sci. Lett. 121, 349–367 (1994).

    Article  Google Scholar 

  84. L. P. Zonenshain, and M. I. Kuzmin, Paleogeodynamics (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

Download references

Funding

This study was carried out under government-financed project for the Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, and was supported by the Russian Foundation for Basic Research, project no. 18-05-00152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Likhanov.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhanov, I.I. Granitoid Anorogenic Magmatism of the Yenisei Range: Evidence of Lithospheric Extension in the Western Part of the Siberian Craton. Geochem. Int. 58, 500–519 (2020). https://doi.org/10.1134/S0016702920050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920050055

Keywords:

Navigation