Skip to main content
Log in

Hydrothermal Fluid Particle Geochemistry of Submarine Vents in Kos Island, Aegean Sea East Mediterranean

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The study aims to fill the gap of knowledge in the literature concerning submarine hydrothermal activity on the eastern part of Hellenic Volcanic Arc. Hydrothermal fluids were collected by scuba diving in active shallow hydrothermal venting areas on Kos Island in the Aegean Sea in East Mediterranean. Analysis was carried out in suspended particles for Fe, Mn, Cu, Pb, Cd, Ca, Ba, Sr, Li, Al and Si. During sampling, gas and water flux was measured and gas/water ratios were estimated. The data presented significant time and spatial variability. The gas flux values in Kephalos Bay varied from 2 to 126 L/h and water flux varied from 60 to 122 L/h. In Bros Thermi the gas flux values varied from 4.5 to 60 L/h and the water flux was found to be from 16.5 to 96 L/h. The suspended particulate matter (SPM) flux varied from 0.93 to 8.64 mg/L and between 0.21 and 20.94 mg/L respectively at two sites studied. Metal/Al ratios also varied significantly within a short distance. The pH of hydrothermal waters was from 5.50 to 5.95 in Kephalos Bay and from 6.09 to 6.53 in Bros Thermi suggesting either different mixing of fluids with seawater deeper in the substrate or perhaps that gases CO2 and H2S control pH values. The main scope of this research is to evaluate the fluxes of gas and water and study the main particulate geochemistry of hydrothermal venting fluids. Hydrothermal particles from the submarine vents studied were dominated by Fe, Ca, Si and Al and strongly enriched in Mn, Cu, Pb and Ba. Based on Metal/Al ratios, it is suggested that there are two distinct hydrothermal reservoirs in Kos. The chemistry of the particles emitted from seeps strongly influence both the marine sediment geochemistry and element distribution locally on the sea bottom while subjected to further transportation, hydrothermal particulates could also affect a much greater region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. S. Aliani, R. Meloni, and P. R. Dando, “Periodicities in sediment temperature time–series at a marine shallow water hydrothermal vent in Milos Island (Aegean Volcanic arc, Eastern Mediterranean),” J. Marine Syst. 46, 109–119 (2004).

    Article  Google Scholar 

  2. A. Aparicio-González, C. M. Duarte, and A. Tovar-Sánchez, “Trace metals in deep ocean waters: a review,” J. Marine Syst. 100–101, 26–33 (2012).

    Article  Google Scholar 

  3. O. Bachmann, B. L. A. Charlier, and J. B. Lowenstern, “Zircon crystallization and recycling in the magma chamber of the rhyolitic Kos Plateau Tuff (Aegean arc),” Geology 35, 73–76 (2007).

    Article  Google Scholar 

  4. O. Bachmann et al., “Evolution of silicic magmas in the Kos–Nisyros volcanic center, Greece: A petrological cycle associated with caldera collapse,” Contrib. Mineral. Petrol. 163, 151–166 (2012).

    Article  Google Scholar 

  5. E. T. Balopoulos et al., “Major advances in the oceanography of the southern Aegean Sea–Cretan Straits system (eastern Mediterranean),” Progr. Oceanogr. 44, 109–130 (1999).

    Article  Google Scholar 

  6. S. E. Beaulieu, E. T. Baker, and C. R. German, “Where are the undiscovered hydrothermal vents on oceanic spreading ridges?,” Deep Sea Research Part II: Topical Studies in Oceanography121, 202–212 (2015).

    Article  Google Scholar 

  7. E. V. Blinova and V. B. Kurnosov, “Hydrothermal alterations of sediments in the southern trough of the Guaymas Basin (Gulf of California) and transformation of the composition of solutions,” Lithol. Mineral Res. 50, 433–451 (2015).

    Article  Google Scholar 

  8. K. Bostrom, M. N. A. Peterson, O. Joensuu, and D. E. Fisher, “Aluminum–poor ferromanganoan sediments on active oceanic ridges,” J. Geophys. Res. 74, 3261–3270 (1969).

    Article  Google Scholar 

  9. J. R. Cann, A. M. McCaig, and B. W. D. Yardley, “Rapid generation of reaction permeability in the roots of black smoker systems, Troodos ophiolite, Cyprus,” Geofluids 15, 179–192 (2015).

    Article  Google Scholar 

  10. R. R. Cave, C. R. German, J. Thomson, and R. W. Nesbitt, “Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′ N on the Mid–Atlantic Ridge,” Geochim. Cosmochim. Acta 66, 1905–1923 (2002).

    Article  Google Scholar 

  11. P. R. Dando et al., “Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc,” Continental Shelf Res. 15, 913–929 (1995).

    Article  Google Scholar 

  12. P. R. Dando et al., “Hydrothermal studies in the Aegean sea,” Phys. Chem. Earth, Part B: Hydrology, Oceans Atmosphere 25, 1–8 (2000).

    Google Scholar 

  13. J. M. Edmond et al., “Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data,” Earth Planet. Sci. Lett. 46, 1–18 (1979).

    Article  Google Scholar 

  14. H. N. Edmonds and C. R. German, “Particle geochemistry in the Rainbow hydrothermal plume, Mid–Atlantic Ridge,” Geochim. Cosmochim. Acta 68, 759–772 (2004).

    Article  Google Scholar 

  15. A. J. Findlay, A. Gartman, T. J. Shaw, and G. W. Luther Iii, “Trace metal concentration and partitioning in the first 1.5 m of hydrothermal vent plumes along the Mid–Atlantic Ridge: TAG, Snakepit, and Rainbow,” Chem. Geol. 412, 117–131 (2015).

    Article  Google Scholar 

  16. J. N. Fitzsimmons, E. A. Boyle, and J. J. William, in Proceedings of the National Academy of Sciences, PNAS, Ed. (2014), vol. 111, pp. 16654–16661.

  17. C. R. German, A. C. Campbell, and J. M. Edmond, “Hydrothermal scavenging at the Mid–Atlantic Ridge: Modification of trace element dissolved fluxes,” Earth Planet. Sci. Lett. 107, 101–114 (1991).

    Article  Google Scholar 

  18. C. R. German, S. Colley, M. R. Palmer, A. Khripounoff, and G. P. Klinkhammer, “Hydrothermal plume–particle fluxes at 13°N on the East Pacific Rise,” Deep Sea Res. Part I: Oceanographic Research Papers 49, 1921–1940 (2002).

    Article  Google Scholar 

  19. C. R. German, S. Petersen, and M. D. Hannington, “Hydrothermal exploration of mid–ocean ridges: Where might the largest sulfide deposits be forming?,” Chem. Geol. 420, 114–126 (2016).

    Article  Google Scholar 

  20. E. M. Griffith and A. Paytan, “Barite in the ocean – occurrence, geochemistry and palaeoceanographic applications,” Sedimentology 59, 1817–1835 (2012).

    Article  Google Scholar 

  21. S. Inguaggiato, S. Hidalgo, B. Beate, and J. Bourquin, “Geochemical and isotopic characterization of volcanic and geothermal fluids discharged from the Ecuadorian volcanic arc,” Geofluids 10, 525–541 (2010).

    Article  Google Scholar 

  22. R. H. James et al., “Hydrothermal plumes at Broken Spur, 29° N Mid–Atlantic Ridge: chemical and physical characteristics,” Geol. Soc. London, Spec. Publ. 87, 97–110 (1995).

    Article  Google Scholar 

  23. D. Kadko, “An assessment of the effect of chemical scavenging within submarine hydrothermal plumes upon ocean geochemistry,” Earth. Planet. Sci. Lett. 120, 361–374 (1994).

    Article  Google Scholar 

  24. A. P. Karageorgis and C. L. Anagnostou, “Particulate matter spatial–temporal distribution and associated surface sediment properties: Thermaikos Gulf and Sporades Basin, NW Aegean Sea,” Cont. Shelf Res. 21, 2141–2153 (2001).

    Article  Google Scholar 

  25. V. Klevenz et al., “Geochemistry of vent fluid particles formed during initial hydrothermal fluid–seawater mixing along the Mid–Atlantic Ridge,” Geochem., Geophys., Geosyst. 12, (2011).

  26. E. Lagios, D. Galanopoulos, B. A. Hobbs, and G. J. K. Dawes, Two–dimensional magnetotelluric modelling of the Kos Island geothermal region (Greece). Tectonophysics 287, 157–172 (1998).

    Article  Google Scholar 

  27. C. Lalou, “Deep–sea hydrothermal venting: a recently discovered marine system,” J. Marine Syst.1, 403–440 (1991).

    Article  Google Scholar 

  28. W. M. Landing and B. L. Lewis, “Collection, processing and analysis of marine particulate and colloidal material for transition metals,” In Marine Particles: Analysis and Characterization, Ed. by D. Spencer and D. Hurd, Geophys. Monogr. AGU 63, 263–272 (1991).

  29. M. I. Leybourne et al., “Submarine magmatic–hydrothermal systems at the Monowai volcanic center, Kermadec Arc,” Econ. Geol. 107, 1669–1694 (2012).

    Article  Google Scholar 

  30. Y. H. Li, A Compendium of Geochemistry: from Solar Nebula to the Human Brain. (Princeton University Press, Princeton, NJ, 2000).

    Google Scholar 

  31. I. Livanos, P. Nomikou, D. Papanikolaou, and G. Rousakis, “The volcanic debris avalanche on the SE submarine slope of Nisyros volcano, Greece: geophysical exploration and implications for subaerial eruption history,” Geo–Marine Lett. 33, 419–431 (2013).

    Article  Google Scholar 

  32. D. H. Loring and R. T. T. Rantala, “Manual for the geochemical analyses of marine sediments and suspended particulate matter,” Earth Sci. Rev. 32, 235–283 (1992).

    Article  Google Scholar 

  33. R. P. Lowell, K. Kolandaivelu, and P. A. Rona, in Reference Module in Earth Systems and Environmental Sciences. (Elsevier, 2014).

    Google Scholar 

  34. V. Lykousis et al., “Major outputs of the recent multidisciplinary biogeochemical researches undertaken in the Aegean Sea,” J. Marine Syst.33–34, 313–334 (2002).

    Article  Google Scholar 

  35. P. Megalovasilis, Ph.D, National and Kapodistrian University of Athens (Athens, 2007).

    Google Scholar 

  36. P. Megalovasilis, “Partition geochemistry of hydrothermal precipitates from submarine hydrothermal fields in the Hellenic Volcanic Island Arc,” Geochem. Int. 52, 992–1010 (2014).

    Article  Google Scholar 

  37. P. Megalovasilis and A. Godelitsas, “Hydrothermal influence on nearshore sediments of Kos Island, Aegean Sea,” Geo-Mar. Lett.35, 77–89 (2015).

    Article  Google Scholar 

  38. P. Megalovasilis and A. Godelitsas, in 15th RCMNS Conference “Exploring a “Physical Laboratory”: the Mediterranean (National and Kapodistrian University of Athens, Athens, 2017), vol. 1, pp. 36.

  39. P. Megalovasilis, G. Papatheodorou, and M. Geraga, in 15th RCMNS Conference “Exploring a “Physical Laboratory”: the Mediterranean Basin” (National and Kapodistrian University of Athens, Athens, Greece, 2017), vol. 1, pp. 35.

  40. A. Minissale, V. Duchi, N. Kolios, M. Nocenti, and C. Verrucchi, Chemical patterns of thermal aquifers in the volcanic islands of the Aegean Arc, Greece, Geothermics 26, 501–518 (1997).

    Article  Google Scholar 

  41. M. J. Mottl, “Partitioning of energy and mass fluxes between mid–Ocean ridge axes and flanks at high and low temperature,Energy and Mass Transfer in Marine Hydrothermal Systems, Ed. by P. Halbach, V. Tunnicliffe, and J. Hein (DUP, Berlin, 2003), pp. 271–286.

    Google Scholar 

  42. J. Nishioka, H. Obata, and D. Tsumune, “Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean,” Earth Planet. Sci. Lett. 361, 26–33 (2013).

    Article  Google Scholar 

  43. P. Nomikou, D. Papanikolaou, M. Alexandri, D. Sakellariou, and G. Rousakis, “Submarine volcanoes along the Aegean volcanic arc,” Tectonophysics 597–598, 123–146 (2013).

    Article  Google Scholar 

  44. D. Papanikolaou, “Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides,” Tectonophysics 595–596, 1–24 (2013).

    Article  Google Scholar 

  45. D. Papanikolaou and E. Lekkas, “Miocene tectonism in Kos, Dodecanese islands,” IESCA Abstract, 179–180 (1990).

  46. G. Pe-Piper and D. J. W. Piper, in Developments in Volcanology, Ed. by F. Michael and E. V. George (Elsevier, 2005), vol. 7, pp. 113–133.

    Google Scholar 

  47. G. Pe-Piper, D. J. W. Piper, and C. Perissoratis, “Neotectonics and the Kos Plateau Tuff eruption of 161 ka, South Aegean arc,” J. Volcanol. Geotherm. Res. 139, 315–338 (2005).

    Article  Google Scholar 

  48. X. L. Pichon and J. Angelier, “The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern mediterranean area,” Tectonophysics 60, 1–42 (1979).

    Article  Google Scholar 

  49. D. Ray, E. V. S. S. K. Babu, and L. S. Prakash, “Nature of suspended particles in hydrothermal plume at 3°40′ N Carlsberg Ridge: A comparison with deep oceanic suspended matter,” Curr. Sci. 112, 139–146 (2017).

    Article  Google Scholar 

  50. J. A. Resing et al., “Basin–scale transport of hydrothermal dissolved metals across the South Pacific Ocean,” Nature 523, 200–203 (2015).

    Article  Google Scholar 

  51. S. Roshan, J. Wu, and W. J. Jenkins, “Long-range transport of hydrothermal dissolved Zn in the tropical South Pacific,” Mar. Chem. 183, 25–32 (2016).

    Article  Google Scholar 

  52. L. H. Royden and D. J. Papanikolaou, “Slab segmentation and late Cenozoic disruption of the Hellenic arc,” Geochem., Geophys., Geosyst. 12, 1–24 (2011).

    Article  Google Scholar 

  53. G. L. Ruffa et al., “Isotope and chemical assessment of geothermal potential of Kos Island, Greece,” Geothermics 28, 205–217 (1999).

    Article  Google Scholar 

  54. P.-M. Sarradin et al., “Dissolved and particulate metals (Fe, Zn, Cu, Cd, Pb) in two habitats from an active hydrothermal field on the EPR at 13° N,” Sci. Total Environ.392, 119–129 (2008).

    Article  Google Scholar 

  55. R. M. Sherrell, M. P. Field, and G. Ravizza, “Uptake and fractionation of rare earth elements on hydrothermal plume particles at 9°45′ N, East Pacific Rise,” Geochim. Cosmochim. Acta 63, 1709–1722 (1999).

    Article  Google Scholar 

  56. A. Tagliabue, PNAS, 111, 16641–16642 (2014).

    Article  Google Scholar 

  57. The Engineering ToolBox (2017).

  58. M. Triantaphyllis, (Inst. Geology and Mineral Exploration (IGME), Athens, 1984).

  59. M. Triantaphyllis and A. Mavrides (Inst. Geology and Mineral Exploration (IGME), Athens, 1998).

  60. N. Tsoukalas, Saint Mary’s University, Halifax, Nova Scotia, Canada., Halifax, Nova Scotia, Canada, MSc, (2008).

  61. S. Varnavas, P. Megalovasilis, D. Panagiotaras, and P. Dando, XXIII General Assembly of European Geophysical Society (EGS). Part II Hydrology, Oceans & Atmospere, Nice, France, 1998 (Nice, 1998).

  62. S. P. Varnavas and D. S. Cronan, “Hydrothermal metallogenic processes off the islands of Nisiros and Kos in the Hellenic Volcanic Arc,” Mar. Geol. 99, 109–133 (1991).

    Article  Google Scholar 

  63. S. P. Varnavas and D. S. Cronan, “Submarine hydrothermal activity off Santorini and Milos in the Central Hellenic Volcanic Arc: a synthesis,” Chem. Geol. 224, 40–54 (2005).

    Article  Google Scholar 

  64. S. P. Varnavas et al., “Compositional characterization of suspended particulate matter in Hellenic volcanic arc hydrothermal centres,” Phys. Chem. Earth, Part B: Hydrology, Oceans and Atmosphere 25, 9–18 (2000).

    Google Scholar 

  65. K. L. Von Damm et al., “Chemistry of submarine hydrothermal solutions at 218N, East Pacific Rise,” Geochim. Cosmochim. Acta 49, 2197–2220 (1985).

    Article  Google Scholar 

  66. M. Whittield, R. D. Turner, in Aquatic Surface Chemistry: Chemical Processes at the Particle – Water Interface, Ed. by W. Stumm (John Wiley, New York, 1987), pp. 457–493.

    Google Scholar 

  67. M. Yücel et al., Eco-geochemical dynamics of a shallow–water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean)," Chem. Geol. 356, 11–20 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I want to thank divers Panagiotis Tsarpalis, Kostas Romeos for their excellent work during all the submarine research, the coordinator of the project Prof. P.Dando and Prof. S.Varnavas for providing the opportunity to collect and analyse samples and Prof. Maria Geraga for her valuable help on factor analysis. Part of this work had been funded by the EU MAST programme, Contract no. MAST2-CT94-0101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlos Megalovasilis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlos Megalovasilis Hydrothermal Fluid Particle Geochemistry of Submarine Vents in Kos Island, Aegean Sea East Mediterranean. Geochem. Int. 58, 574–597 (2020). https://doi.org/10.1134/S0016702920050067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920050067

Keywords:

Navigation