Skip to main content
Log in

Tea Polyphenols Affect Oxidative Modification and Solution Stability of Myofibrillar Protein from Grass Carp (Ctenopharyngodon idellus)

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study investigated the effects of different concentrations (0, 5, 10, 20, 50, and 100 μmol/g protein) of tea polyphenols (TP) on the oxidative modification and the physicochemical, structural, and gelling properties of myofibrillar protein (MP) from grass carp (Ctenopharyngodon idellus) oxidized by a hydroxyl radical-generating system. The results showed that low concentrations (5 and 10 μmol/g protein) of TP could effectively inhibit the formation of carbonyl groups and dityrosine, the loss of sulfhydryl groups and α-helix conformation, and the change of the tertiary structure of MP caused by hydroxyl radicals. Moreover, the presence of TP in all concentrations decreased the surface hydrophobicity of MP. TP at 10 μmol/g protein had better effects on preventing the oxidation-induced cross-linking and aggregation of myosin heavy chain (MHC) and actin of MP, keeping the stability of MP solutions with lower turbiscan stability index (TSI) values, and improving gelling properties characterized by higher hardness and gel strength of MP gels. By contrast, excessive presence of TP (20, 50, and 100 μmol/g protein) showed pro-oxidative effects on oxidatively stressed MP, which was detrimental to the MP and contributed to the denaturation and irregular aggregation of MP, the loss of MP solution stability, and lower gelling capacity with poor texture and gel strength. The concentration-dependent effects of TP on MP depended on the extent of MP oxidative modification and MP-TP interactions, indicating that a proper amount of TP has the potential to protect MP from oxidation and to enhance the gelling capacity of surimi during processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.P. Baron, in Aquatic Foods, ed. by H. G. Kristinsson. In protein oxidation (John Wiley & Sons, New York, 2014), pp. 23–42

    Google Scholar 

  2. Z. Wang, Z. He, X. Gan, H. Li, Food Biophys. 13(4), 374–386 (2018)

  3. T. Zhang, Y. Xue, Z. Li, Y. Wang, W. Yang, C. Xue, Innov. Food Sci. Emerg. Technol. 34, 16–23 (2016)

    Article  Google Scholar 

  4. O. Soladoye, M. Juárez, J. Aalhus, P. Shand, M. Estévez, Compr. Rev. Food Sci. Food Saf. 14(2), 106–122 (2015)

  5. M. Xia, Y. Chen, J. Guo, X. Feng, X. Yin, L. Wang, W. Wu, Z. Li, W. Sun, J. Ma, Food Res. Int. 121, 678–683 (2019)

    Article  CAS  Google Scholar 

  6. J.X. Cao, C.Y. Zhou, Y. Wang, Y.Y. Sun, D.D. Pan, Food Chem. 240, 346–353 (2018)

    Article  CAS  Google Scholar 

  7. Y. Li, X. Li, J. Wang, C. Zhang, H. Sun, C. Wang, X. Xie, Food Biophys. 9(2), 169–178 (2014)

  8. D. Hygreeva, M.C. Pandey, K. Radhakrishna, Meat Sci. 98(1), 47–57 (2014)

    Article  CAS  Google Scholar 

  9. L. Wang, M. Zhang, B. Bhandari, Z. Gao, Food Res. Int. 86, 131–139 (2016)

    Article  CAS  Google Scholar 

  10. M. Estévez, Y.L. Xiong, J. Food Sci. 84(3), 387–396 (2019)

    Article  Google Scholar 

  11. C.Y. Zhou, D.D. Pan, Y.Y. Sun, C.B. Li, X.L. Xu, J.X. Cao, G.H. Zhou, J. Sci. Food Agric. 98(9), 3563–3570 (2018)

  12. X. Du, Y. Sun, D. Pan, Y. Wang, C. Ou, J. Cao, J. Sci. Food Agric. 98(8), 3140–3147 (2018)

  13. M. Estévez, Meat Sci. 89(3), 259–279 (2011)

    Article  Google Scholar 

  14. L. Li, H. Ji, Int. J. Food Prop. 22(1), 186–197 (2019)

    Article  CAS  Google Scholar 

  15. T. Rysman, M. Utrera, D. Morcuende, G. Van Royen, S. Van Weyenberg, S. De Smet, M. Estévez, Food Chem. 211, 784–790 (2016)

    Article  CAS  Google Scholar 

  16. J. Zhang, Y. Wang, D.D. Pan, J.X. Cao, X.F. Shao, Y.J. Chen, Y.Y. Sun, C.R. Ou, Meat Sci. 117, 130–136 (2016)

    Article  CAS  Google Scholar 

  17. S.S. Turgut, F. Işıkçı, A. Soyer, Meat Sci. 129, 111–119 (2017)

    Article  CAS  Google Scholar 

  18. L. Xu, M. Zhu, X. Liu, J. Cheng, LWT. 91, 222–228 (2018)

    Article  CAS  Google Scholar 

  19. M.S. Brewer, Compr. Rev. Food Sci. Food Saf. 10(4), 221–247 (2011)

    Article  CAS  Google Scholar 

  20. M. Estévez, M. Heinonen, J. Agric. Food Chem. 58(7), 4448–4455 (2010)

  21. N. Jia, L. Wang, J. Shao, D. Liu, B. Kong, Meat Sci. 127, 45–50 (2017)

    Article  CAS  Google Scholar 

  22. S. Maqsood, S. Benjakul, F. Shahidi, Crit. Rev. Food Sci. Nutr. 53(2), 162–179 (2013)

    Article  CAS  Google Scholar 

  23. T. Ozdal, E. Capanoglu, F. Altay, Food Res. Int. 51(2), 954–970 (2013)

    Article  CAS  Google Scholar 

  24. W. Jiang, Y. He, S. Xiong, Y. Liu, T. Yin, Y. Hu, J. You, Food Bioprocess Technol. 10(2), 370–378 (2017)

    Article  CAS  Google Scholar 

  25. R. Zhang, S. Xiong, J. You, Y. Hu, R. Liu, T. Yin, J. Food Qual. 2017, 9 (2017)

    Google Scholar 

  26. A.G. Gornall, C.J. Bardawill, M.M. David, J. Biol. Chem. 177(2), 751–766 (1949)

    CAS  PubMed  Google Scholar 

  27. R.L. Levine, J.A. Williams, E.R. Stadtman, E. Shacter, Method Enzymol 233, 346–357 (1994)

    Article  CAS  Google Scholar 

  28. G.L. Ellman, Arch. Biochem. Biophys. 82(1), 70–77 (1959)

    Article  CAS  Google Scholar 

  29. S. Saeed, N.K. Howell, J. Sci. Food Agric. 84(10), 1216–1222 (2004)

  30. W. Bors, W. Heller, C. Michel, in Flavonoids as Antioxidants: Determination of Radical-Scavenging Efficiencies, ed. by C. A. Rice, E. Vans, L. Packer. M. Saran (Academic Press Inc, San Diego, 1990), pp. 343–355

    Google Scholar 

  31. C. Rice-Evans, N. Miller, G. Paganga, Trends Plant Sci. 2(4), 152–159 (1997)

    Article  Google Scholar 

  32. Y. Cao, Y.L. Xiong, Food Chem. 180, 235–243 (2015)

    Article  CAS  Google Scholar 

  33. S. Jongberg, M.A. Torngren, A. Gunvig, L.H. Skibsted, M.N. Lund, Meat Sci. 93(3), 538–546 (2013)

    Article  CAS  Google Scholar 

  34. M. Utrera, M. Estévez, Food Chem. 141(4), 4000–4009 (2013)

    Article  CAS  Google Scholar 

  35. R. Ganhão, D. Morcuende, M. Estévez, Meat Sci. 85(3), 402–409 (2010)

    Article  Google Scholar 

  36. J.E. Beart, T.H. Lilley, E. Haslam, J. Chem. Soc. Perk T 2. 9, 1439–1443 (1985)

  37. S. Jongberg, M.N. Lund, A.L. Waterhouse, L.H. Skibsted, J. Agric. Food Chem. 59(18), 10329–10335 (2011)

  38. S. Jongberg, S.H. Skov, M.A. Tørngren, L.H. Skibsted, M.N. Lund, Food Chem. 128(2), 276–283 (2011)

    Article  CAS  Google Scholar 

  39. M. Morzel, P. Gatellier, T. Sayd, M. Renerre, E. Laville, Meat Sci. 73(3), 536–543 (2006)

    Article  CAS  Google Scholar 

  40. Y. Cao, A.D. True, J. Chen, Y.L. Xiong, J. Agric. Food Chem. 64(15), 3054–3061 (2016)

  41. J. Kroll, H.M. Rawel, S. Rohn, Food Sci. Technol. Res. 9(3), 205–218 (2003)

    Article  CAS  Google Scholar 

  42. X. Wu, H. Wu, M. Liu, Z. Liu, H. Xu, F. Lai, Spectrochim. Acta A Mol. Biomol. Spectrosc. 82(1), 164–168 (2011)

    Article  CAS  Google Scholar 

  43. T. Ozdal, E. Capanoglu, F. Altay, Food Res. Int. 51(2), 954–970 (2013)

    Article  CAS  Google Scholar 

  44. Y. Cao, Y.L. Xiong, J. Agric. Food Chem. 65(38), 8443–8450 (2017)

  45. Y.L. Xiong, S.P. Blanchard, T. Ooizumi, Y. Ma, J. Food Sci. 75(2), C215–C221 (2010)

    Article  CAS  Google Scholar 

  46. J. Yang, Y.L. Xiong, Food Chem. 243, 231–238 (2018)

    Article  CAS  Google Scholar 

  47. Y. Bao, S. Boeren, P. Ertbjerg, Meat Sci. 135, 102–108 (2018)

    Article  CAS  Google Scholar 

  48. C. Thongkaew, M. Gibis, J. Hinrichs, J. Weiss, Food Hydrocoll. 41, 103–112 (2014)

    Article  CAS  Google Scholar 

  49. S. Wang, Y. Zhang, L. Chen, X. Xu, G. Zhou, Z. Li, X. Feng, Food Chem. 243, 50–57 (2018)

    Article  CAS  Google Scholar 

  50. K. Wang, G. Li, B. Zhang, Colloids Surf. A Physicochem. Eng. Asp 558, 402–409 (2018)

    Article  CAS  Google Scholar 

  51. A.J. Charlton, N.J. Baxter, M.L. Khan, A.J. Moir, E. Haslam, A.P. Davies, M.P. Williamson, J. Agric. Food Chem. 50(6), 1593–1601. (2002)

  52. C. Li, L. He, S. Ma, W. Wu, H. Yang, X. Sun, A. Peng, L. Wang, G. Jin, J. Zhang, Y. Jin, M. Ma, Food Hydrocoll. 84, 181–192 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express gratitude to the National Natural Science Foundation of China (No. 31771999, 31301569), the China Postdoctoral Science Foundation Project (No. 2015 M582143), the Liaoning Revitalization Talents Program (XLYC1807133), and the China Scholarship Council (CSC, No. 201808210350) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinxiang Wang or Jianrong Li.

Ethics declarations

Conflict of Interest

The authors have declared no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, C., Wang, J. et al. Tea Polyphenols Affect Oxidative Modification and Solution Stability of Myofibrillar Protein from Grass Carp (Ctenopharyngodon idellus). Food Biophysics 15, 397–408 (2020). https://doi.org/10.1007/s11483-020-09635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-020-09635-x

Keywords

Navigation