Skip to main content

Advertisement

Log in

Changes in Phytoplankton Communities in a Tropical Estuary in the Colombian Caribbean Sea

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

A Correction to this article was published on 07 July 2020

This article has been updated

Abstract

Phytoplankton community species composition, diversity, biomass, and distribution experience constant changes because of seasonal and temporal variations. This study was done with the aim of describing the response to environmental and seasonal changes of the phytoplankton communities of a tropical estuary in the south of the Colombian Caribbean Sea (Gulf of Urabá) with an emphasis on potential producers of toxin genera. To do these, 15 sites along the Gulf were studied during two cruises in the rainy season and one during the dry season. In each site, water samples from above and below the halocline were collected. Environmental factors such salinity, pH, dissolved oxygen, and nutrient concentration were correlated with diatoms, dinoflagellate, cyanobacteria, and biotoxin producer abundance. The results showed that the number of diatoms was at a maximum of 11,166 cell/L in the fluvial zone. Dinoflagellates were at a maximum of 4250 cell/L in the same zone during the dry season and cyanobacteria blooms during the rainy season. Four genera of potential biotoxin producers were found: Dolichospermum, Prorocentrum, Dinophysis, and Pseudo-nitzschia; this last genus represents 44% of the total diatom abundance during the rainy season with a detectable domoic acid production in a range between 25.54 and 1580.7 pg/mL; this substance can affect different trophic levels in the Gulf, especially mammals due to its non-reversible amnesic effect. Overall, this study shows that the phytoplankton community structure in this tropical stratified estuary presents environment conditions during the rainy season that increase the abundance of phytoplankton that may thrive into blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 07 July 2020

    In the original article there are errors in the data of Fig. 3b. Following is the corrected figure.

References

  • de Affe, H.M., J., M. Menezes, and J.M., C. de Nunes. 2018. Microphytoplankton in a tropical oligotrophic estuarine system: Spatial variations and tidal cycles. Revista Brasileira de Botanica 41 (2): 337–349. https://doi.org/10.1007/s40415-018-0447-y.

  • Aguirre Gómez, R., and O. Salmerón García. 2015. Caracterización de las aguas del Mar Caribe occidental mediante clorofila por fluorescencia in vivo. Revista Ciencias Marinas y Costeras 7 (0). https://doi.org/10.15359/revmar.7.1.

  • American Public Health Association APHA. 2012. Standard methods for the examination of water and wastewater. Washington, DC, USA: American Public Health Association (APHA).

    Google Scholar 

  • Anderson, D.M., P.M. Glibert, and J.M. Burkholder. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 25 (4): 704–726. https://doi.org/10.1007/BF02804901.

    Article  Google Scholar 

  • Andrade, C.A., E.D. Barton, and C.N. Mooers. 2003. Evidence for an eastward flow along the Central and South American Caribbean Coast. Journal of Geophysical Research: Oceans 108 (C6).

  • Barton, A. D., Irwin, A. J., Finkel, Z. V, & Stock, C. A. (2016). Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. 7, 1–6. https://doi.org/10.1073/pnas.1519080113.

  • Bauer, J.E., W.J. Cai, P.A. Raymond, T.S. Bianchi, C.S. Hopkinson, and P.A.G. Regnier. 2013. The changing carbon cycle of the coastal ocean. Nature, Vol. 504 (7478): 61–70. https://doi.org/10.1038/nature12857.

  • Beman, J., K.R. Arrigo, and P.A. Matson. 2005. Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434 (7030): 211–214. https://doi.org/10.1038/nature03370.

    Article  CAS  Google Scholar 

  • Bernal, G., G. Poveda, P. Roldán, and C. Andrade. 2006. Patrones de variabilidad de las temperaturas superficiales del mar en la costa Caribe colombiana. Rev. Acad. Colomb. Cienc 30 (115): 195–208.

    Google Scholar 

  • Blanco-Libreros, J.F. 2009. Banana crop expansion and increased river-borne sediment exports to the Gulf of Urabá, Caribbean coast of Colombia. Ambio: A Journal of the Human Environment 38 (3): 181–183.

    Google Scholar 

  • Blanco, J., E. Viloria, and J. Narvaez. 2006. ENSO and salinity changes in the Cienaga Grande de Santa Marta coastal lagoon system, Colombian Caribbean. Estuarine, Coastal and Shelf Science 66 (1-2): 157–167. https://doi.org/10.1016/j.ecss.2005.08.001.

    Article  Google Scholar 

  • Carstensen, J., R. Klais, and J.E. Cloern. 2015. Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species. Estuarine, Coastal and Shelf Science 162: 98–109. https://doi.org/10.1016/j.ecss.2015.05.005.

    Article  Google Scholar 

  • Chavarría, A. M. G., & Sogamoso, E. A. (2010). Distribution and abundance of diatoms of the genus Pseudo-nitzschia in El Niño conditions in 2007 in the Colombian Pacific Basin. Boletin de Investigaciones Marinas y Costeras, 39(1), 25–39. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-97612010000100002

  • Chevillot, P., A. Molina Márquez, L. Giraldo Ospina, and C. Molina Márquez. 1993. Estudio geológico e hidrológico del Golfo de Urabá. Boletín Científico CIOH 14 (14): 79–90. https://doi.org/10.26640/01200542.14.79_90.

    Article  Google Scholar 

  • Cloern, J.E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: A review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34 (2): 127–168. https://doi.org/10.1029/96RG00986.

    Article  CAS  Google Scholar 

  • Cloern, J.E., S.Q. Foster, and A.E. Kleckner. 2014. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 11 (9): 2477–2501. https://doi.org/10.5194/bg-11-2477-2014.

    Article  Google Scholar 

  • Costa, L.S., V.L.M. Huszar, and A.R. Ovalle. 2009. Phytoplankton functional groups in a tropical estuary: Hydrological control and nutrient limitation. Estuaries and Coasts 32 (3): 508–521. https://doi.org/10.1007/s12237-009-9142-3.

    Article  CAS  Google Scholar 

  • Cullen, J. J., & MacIntyre, J. (1998). Behavior, physiology and the niche of marine phytoplankton. NATO ASI SERIES G ECOOGICAL SCIENCES, 41, 559–580. Recuperado de http://cmore.soest.hawaii.edu/summercourse/2007/documents/Cullen-MacIntyre-NATO98.pdf

  • Dalrymple, R.W., B.A. Zaitlin, and R. Boyd. 1992. Estuarine facies models; conceptual basis and stratigraphic implications. Journal of Sedimentary Research 62 (6): 1130–1146. https://doi.org/10.1306/D4267A69-2B26-11D7-8648000102C1865D.

    Article  Google Scholar 

  • De La Hoz Aristizábal, M. V. (1996). Phytoplankton dynamics in the Ciénaga Grande de Santa Marta, Colombian Caribbean. Boletín de Investigaciones Marinas y Costeras - INVEMAR, 33(1), 159–179. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-97612004000100009

  • Dogliotti, A. I. (2007). Estimación de la biomasa fitoplanctónica mediante el sensoramiento remoto del color del mar y datos de campo en la Plataforma Continental Patagónica. Tesis de. Doctorado. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Buenos Aires, A. 133.

  • Escobar, C.A. 2011. Relevancia de procesos costeros en la hidrodinámica del golfo de urabá (Caribe Colombiano). Boletin de Investigaciones Marinas y Costeras 40 (2): 327–346.

    Google Scholar 

  • Flöder, S., S. Jaschinski, G. Wells, and C.W. Burns. 2010. Dominance and compensatory growth in phytoplankton communities under salinity stress. Journal of Experimental Marine Biology and Ecology 395 (1–2): 223–231. https://doi.org/10.1016/j.jembe.2010.09.006.

    Article  Google Scholar 

  • Franco-Herrera, A., L. Castro, and P. Tigreros. 2006. Plankton dynamics in the south-central Caribbean Sea: Strong seasonal changes in a coastal tropical system. Caribbean Journal of Science 42 (1): 24–38.

    Google Scholar 

  • François, Y., García, C., Cesaraccio, M., & Rojas, X. (2007). El paisaje en el golfo. En C. García-Valencia (Ed.), Atlas del golfo de Urabá: una mirada al Caribe de Antioquia y Chocó. (pp. 75–127). Recuperado de http://www.scielo.org.co/scielo.php?script=sci_nlinks&ref=000107&pid=S0122-9761201100020000600008&lng=en

  • Glibert, P.M. 2016. Margalef revisited: A new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 55: 25–30. https://doi.org/10.1016/j.hal.2016.01.008.

    Article  Google Scholar 

  • Gobler, C.J., A. Burson, F. Koch, Y. Tang, and M.R. Mulholland. 2012. The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA). Harmful Algae 17 (February): 64–74. https://doi.org/10.1016/j.hal.2012.03.001.

    Article  CAS  Google Scholar 

  • Gruber, N., and J.L. Sarmiento. 1997. Global patterns of marine nitrogen fixation and denitrification. Global Biogeochemical Cycles 11 (2): 235–266. https://doi.org/10.1029/97GB00077.

    Article  CAS  Google Scholar 

  • Hallegraeff, G.M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32 (2): 79–99. https://doi.org/10.2216/i0031-8884-32-2-79.1.

    Article  Google Scholar 

  • Hernández, D. (2014). Biodiversidad de algas planctónicas marinas (Cyanobacteria , Prasinophyceae ,Bacillariophyta, Cryptophyta, Haptophyta, Dinoflagellata) en México. Revista Mexicana de Biodiversidad, 85(0), 44–53. https://doi.org/10.7550/rmb.32037.

  • Huang, T., Y. Fu, P. Pan, and C.A. Chen. 2012. Fluvial carbon fluxes in tropical rivers. Current Opinion in Environmental Sustainability 4 (2): 162–169. https://doi.org/10.1016/j.cosust.2012.02.004.

    Article  Google Scholar 

  • INVEMAR, 2017a. Diagnóstico y evaluación de la calidad de las aguas marinas y costeras en el Caribe y Pacífico colombianos. Garcés, O y L Espinosa (Eds). Red de vigilancia para la conservación y protección de las aguas marinas y costeras de Colombia-REDCAM: Invemar, MADS y CAR costeras. Informe técnico 2016. Serie de publicaciones Periódicas N°4 (2017) del INVEMAR, Santa Marta. 260p.

  • INVEMAR, (2017b). Informe del estado de los ambientes marinos y costeros en Colombia. INVEMAR.

  • Jakobsen, H. H., Blanda, E., Staehr, P. A., Højgård, J. K., Rayner, T. A., Pedersen, M. F., Jepsen P. M. Hansen, B. W. (2015). Development of phytoplankton communities: Implications of nutrient injections on phytoplankton composition , pH and ecosystem production. Journal of Experimental Marine Biology and Ecology, 473, 81–89. https://doi.org/10.1016/j.jembe.2015.08.011.

  • Jennerjahn, T.C. 2012. Biogeochemical response of tropical coastal systems to present and past environmental change. Earth-Science Reviews 114 (1–2): 19–41. https://doi.org/10.1016/J.EARSCIREV.2012.04.005.

    Article  CAS  Google Scholar 

  • Lara-Rodríguez, R., R. Velásquez-Arenas, L. Troccoli-Ghinaglia, D. Hernandez, and M. Lemus. 2015. Variación temporal de las variables físico-químicas y biomasa fitoplanctónica en aguas superficiales de la zona costera de Chacopata, NE Venezuela (Mar Caribe). Revista de Biologia Marina y Oceanografia 50 (2): 367–373. https://doi.org/10.4067/S0718-19572015000300015.

    Article  Google Scholar 

  • Lozano-Duque, Y., L.A. Vidal, and G.R. Navas. 2010. Listado de diatomeas (Bacillariophyta) registradas para el Mar Caribe colombiano. Boletín de Investigaciones Marinas y Costeras 39 (1): 83–116.

    Google Scholar 

  • Lucas, L.V., J.R. Koseff, J.E. Cloern, S.G. Monismith, and J.K. Thompson. 1999a. Processes governing phytoplankton blooms in estuaries. I: The local production-loss balance. Marine Ecology Progress Series 187: 1–15. https://doi.org/10.3354/meps187001.

    Article  Google Scholar 

  • Lucas, L.V., J.R. Koseff, S.G. Monismith, J.E. Cloern, and J.K. Thompson. 1999b. Processes governing phytoplankton blooms in estuaries. II: The role of horizontal transport. Marine Ecology Progress Series 187: 17–30. https://doi.org/10.3354/meps187017.

    Article  Google Scholar 

  • Mahoney, P.C., and M.J. Bishop. 2017. Assessing risk of estuarine ecosystem collapse. Ocean & Coastal Management 140: 46–58. https://doi.org/10.1016/j.ocecoaman.2017.02.021.

    Article  Google Scholar 

  • Mallin, M., Paerl, H., & Rudek, J. (1993). Regulation of estuarine primary production by watershed rainfall and river flow. Ecology-Progress Series, 93, 199–199. Recuperado de https://www.int-res.com/articles/meps/93/m093p199.pdf

  • Mancera-Pineda, J. E., Gavio, B., & Arencibia-Carballo, G. (2009). Floraciones Algales Nocivas, Intoxicacion por Microalgas e Impactos en el Desarrollo Regional: El Caso de San Andres Isla, Caribe Colombiano. Cuadernos del Caribe, 7(13), 46–62. https://doi.org/10.1007/s11356-017-0886-1.

  • Margalef, R. 1972. Regularidde en la distribución de la diversidad del fitoplancton en un área del mar caribe. Investigacion Pesquera 36 (2): 241–264.

    Google Scholar 

  • Margalef, R. (1978). Phytoplankton communities in upwelling areas. The example of NW Africa. Oecologia aquatica, 3(3). Recuperado de http://revistes.ub.edu/index.php/oecologiaaquatica/article/viewFile/26943/27996

  • Martínez, M. G. O., Ortega, J. L. G., & Ramos, C. A. Z. (2013). Biodiversidad del fitoplancton de aguas continentales en México. Revista Mexicana de Biodiversidad, 85(0). https://doi.org/10.22201/ib.20078706e.2014.5.1087

  • Masmoudi, S., E. Tastard, W. Guermazi, A. Caruso, A. Morant-Manceau, and H. Ayadi. 2015. Salinity gradient and nutrients as major structuring factors of the phytoplankton communities in salt marshes. Aquatic Ecology 49 (1): 1–19. https://doi.org/10.1007/s10452-014-9500-5.

    Article  CAS  Google Scholar 

  • McCabe, R. M., Hickey, B. M., Kudela, R. M., Lefebvre, K. A., Adams, N. G., Bill, B. D., … Trainer, V. L. (2016). An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. 366–376. https://doi.org/10.1002/2016GL070023.

  • Mckibben, S. M., Peterson, W., Wood, A. M., Trainer, V. L., Hunter, M., & White, A. E. (2017). Climatic regulation of the neurotoxin domoic acid. 114(2). https://doi.org/10.1073/pnas.1606798114.

  • Montoya, L. J., Toro-botero, F. M., & Gomez-giraldo, A. (2017). Study of Atrato river plume in a tropical estuary: Effects of the wind and tidal regime on the Gulf of Uraba, Colombia Estudio de la pluma del río Atrato en un estuario en el trópico : Efectos del viento y del régimen de mareas en el Golfo de Urabá , Co. Universidad Nacional de Colombia, 84(200), 367–375.

  • Montoya, L. J. (2010). Dinámica oceanográfica del golfo de Urabá y su relación con los patrones de dispersión de contaminantes y sedimentos. 103. Recuperado de http://www.bdigital.unal.edu.co/5226/

  • Montoya, L.J., and M. Toro. 2006. Calibración de un modelo hidrodinámico para el estudio de los patrones de circulación en el Golfo de Urabá, Colombia. Avances en recursos hidráulicos 13.

  • Muylaert, K., & Sabbe, K. (1999). Spring phytoplankton assemblages in and around the maximum turbidity zone of the estuaries of the Elbe ž Germany / , the Schelde ž Belgium r The Netherlands / and the Gironde ž France /.

  • Muylaert, K., K. Sabbe, and W. Vyverman. 2009. Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science 82 (2): 335–340.

    CAS  Google Scholar 

  • Oliver, R.L., S.M. Mitrovic, and C. Rees. 2010. Influence of salinity on light conditions and phytoplankton growth in a turbid river. River Research and Applications 26 (7): 894–903. https://doi.org/10.1002/rra.1309.

    Article  Google Scholar 

  • Pednekar, S.M., S.S. Bates, V. Kerkar, and S.P. Matondkar. 2018. Environmental factors affecting the distribution of Pseudo-nitzschia in two monsoonal estuaries of western India and effects of salinity on growth and domoic acid production by P. pungens. Estuaries and Coasts 41 (5): 1448–1462.

    CAS  Google Scholar 

  • Pujos, M., J.L. Pagliardini, R. Steer, G. Vernette, and O. Weber. 1986. Influencia de la contracorriente norte colombiana para la circulación de las aguas en la plataforma continental: su acción sobre la dispersión de los efluentes en suspensión del río Magdalena. Boletín científico CIOH 6: 3–15.

    Google Scholar 

  • Reynolds, C.S. 2006. The ecology of phytoplankton. Cambridge University Press. https://doi.org/10.1017/CBO9780511542145.

  • Rachman, A., and H. Thoha. 2015. Seasonal change in the diel pattern of the Pseudo-nitzschia population in the Cisadane river estuary: Response to the changes in the water’s physical-chemical parameters. Marine Research in Indonesia 39 (1): 39–50. https://doi.org/10.14203/mri.v39i1.83.

    Article  Google Scholar 

  • Sar, E. A., Ferrario, M. E., & Reguera, B. (2002). Floraciones algales nocivas en el Cono Sur Americano (No. 589.3098 S2). Instituto Española de Oceanografía. Scholin, C. A., Gulland, F., Doucette, G. J., Benson, S., Busman, M., Chavez, F. P., … Van Dolah, F. M. (2000). Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature, 403(6765), 80–84. https://doi.org/10.1038/47481.

  • Scholin, C.A., F. Gulland, G.J. Doucette, S. Benson, M. Busman, F.P. Chavez, et al. 2000. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Nature 403 (6765): 80–84. https://doi.org/10.1038/47481.

    Article  CAS  Google Scholar 

  • Silver, M.W., S. Bargu, S.L. Coale, C.R. Benitez-Nelson, A.C. Garcia, K.J. Roberts, E. Sekula-Wood, K.W. Bruland, and K.H. Coale. 2010. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic Pacific. Proceedings of the National Academy of Sciences 107 (48): 20762–20767.

    CAS  Google Scholar 

  • Smayda, T. . (1990). Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. Toxic Marine Plankton, 40, 29–40. Recuperado de http://www.theodorejsmayda.org/download/-80.pdf

  • Smayda, T. J. (1997). What is a bloom? A commentary. Limnology and Oceanography, 42(5part2), 1132–1136. https://doi.org/10.4319/lo.1997.42.5_part_2.1132.

  • Statham, P.J. 2012. Science of the total environment nutrients in estuaries — An overview and the potential impacts of climate change. Science of the Total Environment, The 434: 213–227. https://doi.org/10.1016/j.scitotenv.2011.09.088.

    Article  CAS  Google Scholar 

  • Thessen, A.E., Q. Dortch, M.L. Parsons, and W. Morrison. 2005. Effect of salinity on pseudo-nitzschia species (bacillariophyceae) growth and distribution. Journal of Phycology 41 (1): 21–29. https://doi.org/10.1111/j.1529-8817.2005.04077.x.

    Article  Google Scholar 

  • Tomas, C. R. (Ed.). (1997). Identifying marine phytoplankton. Elsevier.

  • Trainer, V.L., S.S. Bates, N. Lundholm, A.E. Thessen, W.P. Cochlan, N.G. Adams, and C.G. Trick. 2012. Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 14: 271–300. https://doi.org/10.1016/j.hal.2011.10.025.

    Article  Google Scholar 

  • Trainer, V. L., Hickey, B. M., Lessard, E. J., Cochlan, W. P., Trick, C. G., Wells, M. L., … Moore, S. K. (2009). Variability of Pseudo-nitzschia and domoic acid in the Juan de Fuca eddy region and its adjacent shelves. 54(1), 289–308.

  • Trainer, V.L., W.P. Cochlan, A. Erickson, B.D. Bill, F.H. Cox, J.A. Borchert, and K.A. Lefebvre. 2007. Recent domoic acid closures of shellfish harvest areas in Washington State inland waterways. Harmful Algae 6 (3): 449–459. https://doi.org/10.1016/j.hal.2006.12.001.

    Article  CAS  Google Scholar 

  • Trainer, V.L., B.M. Hickey, and R.A. Horner. 2002. Biological and physical dynamics of domoic acid production off the Washington coast. Limnology and Oceanography 47 (5): 1438–1446.

    CAS  Google Scholar 

  • Twilley, R.R., R.H. Chen, and T. Hargis. 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air, & Soil Pollution 64 (1–2): 265–288. https://doi.org/10.1007/BF00477106.

    Article  CAS  Google Scholar 

  • Vajravelu, M., Martin, Y., & Ayyappan, S. (2018). ScienceDirect easonal influence of physicochemical parameters on phytoplankton diversity, community structure and abundance at Parangipettai coastal waters Bay of Bengal, South East Coast of India. Oceanologia, 60(2), 114–127. https://doi.org/10.1016/j.oceano.2017.08.003.

  • Vidal Velásquez, L.A. 2010. Manual de fitoplancton hallado en la Ciénaga grande de Santa Marta y cuerpos de agua aledaños. Universidad Jorge Tadeo Lozano.

  • Wells, M.L., V.L. Trainer, T.J. Smayda, B.S.O. Karlson, C.G. Trick, R.M. Kudela, A. Ishikawa, S. Bernard, A. Wulff, D.M. Anderson, and W.P. Cochlan. 2015. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae 49: 68–93. https://doi.org/10.1016/j.hal.2015.07.009.

    Article  Google Scholar 

  • Zilius, M., M. Bartoli, M. Bresciani, M. Katarzyte, T. Ruginis, J. Petkuviene, I. Lubiene, C. Giardino, P.A. Bukaveckas, R. de Wit, and A. Razinkovas-Baziukas. 2014. Feedback mechanisms between cyanobacterial blooms, transient hypoxia, and benthic phosphorus regeneration in shallow coastal environments. Estuaries and Coasts 37 (3): 680–694. https://doi.org/10.1007/s12237-013-9717-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by CODI-2017 (Comité para el desarrollo de la investigación) through the Universidad de Antioquia, Colombia. The authors thank the research group OCE (Oceans, Climate and Environment) for the support with instruments and technicians during campaigns, BBB biotechnology group, Dra Vera Trainer, Dr. Jorge Vásquez and Dra Heazel Grajales, and all the staff and teachers of the Marine Sciences Faculty of Universidad de Antioquia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noris Córdoba-Mena.

Additional information

Communicated by James L. Pinckney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdoba-Mena, N., Florez-Leiva, L., Atehortúa, L. et al. Changes in Phytoplankton Communities in a Tropical Estuary in the Colombian Caribbean Sea. Estuaries and Coasts 43, 2106–2127 (2020). https://doi.org/10.1007/s12237-020-00750-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00750-z

Keywords

Navigation