Skip to main content
Log in

Community-level variation in plant functional traits and ecological strategies shapes habitat structure along succession gradients in alpine environment

  • Original Article
  • Published:
Community Ecology Aims and scope Submit manuscript

Abstract

Plant traits and ecological strategies elucidate various aspects of ecosystem functioning and services. However, the well-recognized trade-offs evident at the species level are not always expected to mirror community-level variation. Here, we investigated, at the regional scale, the community-level trade-offs of three key plant traits representing economics and size spectra (LA—leaf area, LDMC—leaf dry matter content and SLA—specific leaf area) and Grime’s CSR (competitive, stress tolerant, ruderal) plant strategies. We compared six siliceous alpine plant communities, also representative of Habitat types of EU Community interest (Habitats Directive, 92/43/EEC), distributed along a succession gradient, using a wide range of phytosociological relevés for which we calculated community weighted mean (CWM) trait values and C-, S- and R-scores. Our aims were to: (1) determine the validity of the plant community global spectrum of trait variation within alpine habitats; (2) investigate the discriminating capacity of plant traits and strategies to identify functional niches of dominance, stress and disturbance along the succession gradient; (3) quantify the variation in community structure (species richness and total species cover) through such functional niches. We observed a clear pattern of community-level trait variation that reflected the plant economics spectrum: from acquisitive and fast-growing characteristics in pioneer succession stages, to conservative and stress-tolerant features toward the succession climax, while the productive niche typical of C-selected strategies was scarce. Species richness and total species cover were both greater at intermediate levels of S- and R-selection gradients, indicating high niche differentiation in habitats characterized by exposure to stress or disturbance. Overall, this study demonstrates that trait trade-offs between communities identified at the global scale can undergo adaptation at the regional scale caused by local environmental conditions and also confirms the applicability of CSR strategies to investigate community-level variation of alpine vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Rüger, N., Beck, P. S., et al. (2018). Plant functional trait change across a warming tundra biome. Nature,562(7725), 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Bruelheide, H., Dengler, J., Purschke, O., Lenoir, J., Jiménez-Alfaro, B., Hennekens, S. M., et al. (2018). Global trait–environment relationships of plant communities. Nature Ecology & Evolution,2, 1906–1917.

    Article  Google Scholar 

  • Brusa, G., B. E. L. Cerabolini, A. Bottinelli, C. De Molli. 2016. Georeferenziazione dei rilievi fitosociologici riguardanti le comunità vegetali degli habitat di interesse comunitario in Lombardia. Università degli Studi dell’Insubria - Fondazione Lombardia per l’Ambiente, Osservatorio Regionale per la Biodiversità di Regione Lombardia. http://www.biodiversita.lombardia.it [in Italian].

  • Brusa, G., B. E. L. Cerabolini, M. Dalle Fratte and C. De Molli. 2017. Protocollo operativo per il monitoraggio regionale degli habitat di interesse comunitario in Lombardia. Versione 1.1. Università degli Studi dell’Insubria - Fondazione Lombardia per l’Ambiente, Osservatorio Regionale per la Biodiversità di Regione Lombardia. http://www.biodiversita.lombardia.it [in Italian].

  • Caccianiga, M., & Andreis, C. (2004). Pioneer herbaceous vegetation on glacier forelands in the Italian Alps. Phytocoenologia,34, 55–89.

    Article  Google Scholar 

  • Caccianiga, M., Luzzaro, A., Pierce, S., Ceriani, R. M., & Cerabolini, B. E. L. (2006). The functional basis of a primary succession resolved by CSR classification. Oikos,112, 10–20.

    Article  Google Scholar 

  • Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., et al. (2002). Positive interactions among alpine plants increase with stress. Nature,417, 844–848.

    Article  CAS  PubMed  Google Scholar 

  • Cerabolini, B. E. L., Brusa, G., Ceriani, R. M., De Andreis, R., Luzzaro, A., & Pierce, S. (2010). Can CSR classification be generally applied outside Britain? Plant Ecology,210, 253–261.

    Article  Google Scholar 

  • Cerabolini, B. E. L., Pierce, S., Verginella, A., Brusa, G., Ceriani, R. M., & Armiraglio, S. (2016). Why are many anthropogenic agroecosystems particularly species-rich? Plant Biosystem,150(3), 550–557.

    Article  Google Scholar 

  • Choler, P. (2005). Consistent shifts in alpine plant traits along a mesotopographical gradient. Arctic, Antarctic, and Alpine Research,37(4), 444–453.

    Article  Google Scholar 

  • Choler, P., Michalet, R., & Callaway, R. M. (2001). Facilitation and competition on gradients in alpine plant communities. Ecology,82, 3295–3308.

    Article  Google Scholar 

  • Ciccarelli, D. (2015). Mediterranean coastal dune vegetation: Are disturbance and stress the key selective forces that drive the psammophilous succession? Estuarine, Coastal and Shelf Science,165, 247–253.

    Article  Google Scholar 

  • Commission of the European Community. (1991). CORINE biotopes manual—Habitats of the European Community. Luxembourg: DG Environment, Nuclear Safety and Civil Protection.

    Google Scholar 

  • Dalle Fratte, M., Bolpagni, R., Brusa, G., Caccianiga, M., Pierce, S., Zanzottera, M., et al. (2019a). Alien plant species invade by occupying similar functional spaces to native species. Flora,257, 151419.

    Article  Google Scholar 

  • Dalle Fratte, M., Brusa, G., Pierce, S., Zanzottera, M., & Cerabolini, B. E. L. (2019b). Plant trait variation along environmental indicators to infer global change impacts. Flora,254, 113–121.

    Article  Google Scholar 

  • De Bello, F., Lavorel, S., Lavergne, S., Albert, C. H., Boulangeat, I., Mazel, F., et al. (2013). Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography,36, 393–402.

    Article  Google Scholar 

  • De Mendiburu, F. 2019. agricolae: Statistical procedures for agricultural research. R package version 1.3-1.

  • Díaz, S., & Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution,16(11), 646–655.

    Article  Google Scholar 

  • Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., et al. (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science,15, 295–304.

    Article  Google Scholar 

  • Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., et al. (2016). The global spectrum of plant form and function. Nature,529, 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Dubuis, A., Rossier, L., Pottier, J., Pellissier, L., Vittoz, P., & Guisan, A. (2013). Predicting current and future spatial community patterns of plant functional traits. Ecography,36, 1158–1168.

    Article  Google Scholar 

  • E.E.A. 2017. Climate change, Impacts and Vulnerability in Europe 2016. EEA Report No 1/2017. European Environment Agency.

  • European Commission, D. E. (2013). Interpretation manual of European Union habitats–EUR28 (p. 144). DG Environment: Eur Comm.

    Google Scholar 

  • Fraser, L. H., Pither, J., Jentsch, A., Sternberg, M., Zobel, M., Askarizadeh, D., et al. (2015). Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science,349(6245), 302–305.

    Article  CAS  PubMed  Google Scholar 

  • Garnier, E., Stahl, U., Laporte, M. A., Kattge, J., Mougenot, I., Kühn, I., et al. (2017). Towards a thesaurus of plant characteristics: An ecological contribution. Journal of Ecology,105, 298–309.

    Article  Google Scholar 

  • Giacomini, V., & Pignatti, S. (1955). Flora e vegetazione dell’AltaValle del Braulio con speciale riferimento ai pascoli d’altitudine. Memorie della Società italiana di scienze naturali,1111, 47–238. [in Italian].

    Google Scholar 

  • Gobbi, M., Caccianiga, B. E. L., Cerabolini, F. De, Bernardi, A. Luzzaro, & Pierce, S. (2010). Plant adaptive responses during primary succession are associated with functional adaptations in ground beetles on deglaciated terrain. Community Ecology,11(2), 223–231.

    Article  Google Scholar 

  • Good, M., Morgan, J. W., Venn, S., & Green, P. (2019). Timing of snowmelt affects species composition via plant strategy filtering. Basic and Applied Ecology,35, 54–62.

    Article  Google Scholar 

  • Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature,242(5396), 344–347.

    Article  Google Scholar 

  • Grime, J. P. (1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology,86(6), 902–910.

    Article  Google Scholar 

  • Grime, J. P. (2001). Plant strategies, vegetation processes and ecosystem properties (2nd ed.). New York: Wiley.

    Google Scholar 

  • Grime, J. P. (2006). Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science,17, 255–260.

    Article  Google Scholar 

  • Grime, J. P., & Pierce, S. (2012). The evolutionary strategies that shape ecosystems. UK: Wiley-Blackwell.

    Book  Google Scholar 

  • Hunt, R., Hodgson, J. G., Thompson, K., Bungener, P., Dunnett, N. P., & Askew, A. P. (2004). A new practical tool for deriving a functional signature for herbaceous vegetation. Application of Vegetation Science,7, 163–170.

    Article  Google Scholar 

  • Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., et al. (2020). TRY plant trait database–enhanced coverage and open access. Global Change Biology,26(1), 119–188. https://doi.org/10.1111/gcb.14904.

    Article  PubMed  Google Scholar 

  • Kovats, R.S., R. Valentini, L.M. Bouwer, E. Georgopoulou, D. Jacob, E. Martin, M. Rounsevell, J.F. Soussana. 2014. Europe. In: V.S. Barros, C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, L.L. White (eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge and New York. pp. 1267–1326.

  • Kudo, G., Nordenhall, U., & Molau, U. (1999). Effects of snow melt timing on leaf traits, leaf production, and shoot growth of alpine plants: Comparisons along a snowmelt gradient in northern Sweden. Ecoscience,6, 439–450.

    Article  Google Scholar 

  • Laliberté E., P. Legendre and Shipley B. 2014. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.

  • Li, W., Epstein, H. E., Wen, Z., Zhao, J., Jin, J., Jing, G., et al. (2017). Community-weighted mean traits but not functional diversity determine the changes in soil properties during wetland drying on the Tibetan Plateau. Solid Earth,8, 137–147.

    Article  Google Scholar 

  • Li, Y., & Shipley, B. (2017). An experimental test of CSR theory using a globally calibrated ordination method. PLoS ONE,12(4), e0175404. https://doi.org/10.1371/journal.pone.0175404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maestre, F. T., Callaway, R. M., Valladares, F., & Lortie, C. J. (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology,97(2), 199–205.

    Article  Google Scholar 

  • Malkinson, D., & Tielbörger, K. (2010). What does the stress-gradient hypothesis predict? Resolving the discrepancies. Oikos,119(10), 1546–1552.

    Article  Google Scholar 

  • Matthews, J. A. 1992. The ecology of recently deglaciated terrain. A geoecological approach to glacier forelands and primary succession. Cambridge studies in ecology. Cambridge: Cambridge University Press.

  • McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology Evolution,21(4), 178–185.

    Article  PubMed  Google Scholar 

  • Millard, S. P. (2013). EnvStats: An R package for environmental statistics. New York: Springer.

    Book  Google Scholar 

  • Negreiros, D., Le Stradic, S., Fernandes, G. W., & Renno, H. C. (2014). CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecology,215(4), 379–388.

    Article  Google Scholar 

  • Niu, K., Messier, J., He, J. S., & Lechowicz, M. J. (2015). The effects of grazing on foliar trait diversity and niche differentiation in Tibetan alpine meadows. Ecosphere,69(9), 1–15.

    CAS  Google Scholar 

  • Ónodi, G., Kröel-Dulay, G., Kovács-Láng, E., Ódor, P., Botta-Dukát, Z., Lhotsky, B., et al. (2017). Comparing the accuracy of three non-destructive methods in estimating aboveground plant biomass. Community Ecology,18(1), 56–62.

    Article  Google Scholar 

  • Peco, B., Navarro, E., Carmona, C. P., Medina, N. G., & Marques, M. J. (2017). Effects of grazing abandonment on soil multifunctionality: The role of plant functional traits. Agriculture, Ecosystems & Environment,249, 215–225.

    Article  Google Scholar 

  • Pellissier, L., Descombes, P., Hagen, O., Chalmandrier, L., Glauser, G., Kergunteuil, A., et al. (2018). Growth-competition-herbivore resistance trade-offs and the responses of alpine plant communities to climate change. Functional Ecology,32, 1693–1703.

    Article  Google Scholar 

  • Perez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., et al. (2016). Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany,64, 715–716.

    Article  Google Scholar 

  • Pierce, S. (2014). Implications for biodiversity conservation of the lack of consensus regarding the humped-back model of species richness and biomass production. Functional Ecology,28, 253–257.

    Article  Google Scholar 

  • Pierce, S. and B.E.L. Cerabolini. 2018. Plant economics and size trait spectra are both explained by one theory. Economics and Size in Ecology, open-access self-published essay, The Plant Press, Milan.

  • Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A., & Cerabolini, B. E. L. (2007a). The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystem,141, 337–343.

    Article  Google Scholar 

  • Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M., & Cerabolini, B. E. L. (2007b). Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology,95, 698–706.

    Article  Google Scholar 

  • Pierce, S., Negreiros, D., Cerabolini, B. E. L., Kattge, J., Díaz, S., Kleyer, M., et al. (2017). A global method for calculating plant CSR ecological strategies applied across biomes worldwide. Functional Ecology,31, 444–457.

    Article  Google Scholar 

  • Reich, P. B. (2014). The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology,102, 275–301.

    Article  Google Scholar 

  • Ricotta, C., Bacaro, G., Caccianiga, M., Cerabolini, B. E., & Moretti, M. (2015). A classical measure of phylogenetic dissimilarity and its relationship with beta diversity. Basic Applications of Ecology,16(1), 10–18.

    Article  Google Scholar 

  • Ricotta, C., de Bello, F., Moretti, M., Caccianiga, M., Cerabolini, B. E., & Pavoine, S. (2016). Measuring the functional redundancy of biological communities: A quantitative guide. Methods in Ecology Evolution,7(11), 1386–1395.

    Article  Google Scholar 

  • Rosbakh, S., Römermann, C., & Poschlod, P. (2015). Specific leaf area correlates with temperature: New evidence of trait variation at the population, species and community levels. Alpine Botany,125(2), 79–86.

    Article  Google Scholar 

  • Rosenfield, M. F., Müller, S. C., & Overbeck, G. E. (2019). Short gradient, but distinct plant strategies: The CSR scheme applied to subtropical forests. Journal of Vegetation and Science,30, 984–993.

    Article  Google Scholar 

  • R Core Team, 2019. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Shipley, B., Vile, D., & Garnier, E. (2006). From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science,314(5800), 812–814.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, H. J., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., et al. (2020). Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications,11(1), 1–12.

    Article  CAS  Google Scholar 

  • Thuiller, W., D.M. Richardson and G.F. Midgley. 2008. Will Climate Change Promote Alien Plant Invasions? In: W. Nentwig (eds.), Biological Invasions. Ecological Studies (Analysis and Synthesis), vol 193. Springer, Berlin.

  • Van den Boogaart, K.G., R. Tolosana-Delgado and M. Bren. (2018). Compositions: Compositional Data Analysis. R Package Version 1. https://CRAN.Rproject.org/package=compositions.

  • Van den Boogaart, K. G., & Tolosana-Delgado, R. (2013). Analyzing compositional data with R. Heidelberg: Springer.

    Book  Google Scholar 

  • Venn, S., Green, K., Pickering, C. M., & Morgan, J. W. (2011). Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snow-patches. Plant Ecology,212, 1491–1499.

    Article  Google Scholar 

  • Violle, C., & Jiang, L. (2009). Towards a trait-based quantification of species niche. Journal of Plant Ecology,2(2), 87–93.

    Article  Google Scholar 

  • Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., et al. (2007). Let the concept of trait be functional! Oikos,116, 882–892.

    Article  Google Scholar 

  • Walther, G. R. (2010). Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences,365, 2019–2024.

    Article  Google Scholar 

  • Weiher, E., Freund, D., Bunton, T., Stefanski, A., Lee, T., & Bentivenga, S. (2011). Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society B: Biological Sciences,366, 2403–2413.

    Article  Google Scholar 

  • Wright, I. J., Dong, N., Maire, V., Prentice, C., Westoby, M., Díaz, S., et al. (2017). Global climatic drivers of leaf size. Science,357(6354), 917–921.

    Article  CAS  PubMed  Google Scholar 

  • Wright, I. J., Reich, B. P., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature,428, 821–827.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Fondazione Lombardia per l'Ambiente.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Dalle Fratte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanzottera, M., Dalle Fratte, M., Caccianiga, M. et al. Community-level variation in plant functional traits and ecological strategies shapes habitat structure along succession gradients in alpine environment. COMMUNITY ECOLOGY 21, 55–65 (2020). https://doi.org/10.1007/s42974-020-00012-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42974-020-00012-9

Keywords

Navigation