Skip to main content
Log in

Comparisons of activated carbons produced from sycamore balls, ripe black locust seed pods, and Nerium oleander fruits and also their H2 storage studies

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Starting materials are very significant to produce activated carbons because every starting material has a different chemical structure; hence they affect the surface functional groups and surface morphologies of obtained activated carbons. In this study, sycamore balls, ripe black locust seed pods, and Nerium oleander fruits have been used as starting materials by ZnCl2 chemical activations for the first time. Firstly, activated carbons were obtained from these starting materials with ZnCl2 chemical activation by changing production conditions (carbonization time, carbonization temperature, and impregnation ratio) also affecting the structural and textural properties of the resultant activated carbons. Then, the starting materials and resultant activated carbons were characterized by utilizing diverse analysis techniques, such as TGA, elemental analysis, proximate analysis, BET surface areas, pore volumes, pore size distributions, N2 adsorption–desorption isotherms, SEM, FTIR spectra, and H2 adsorption isotherms. The highest surface areas were determined to be 1492.89, 1564.84, and 1375.47 m2/g for the activated carbons obtained from sycamore balls, ripe black locust seed pods, and N. oleander fruits, respectively. The yields of these activated carbons with the highest surface areas were calculated to be around 40%. As the carbonization temperature increased with sufficient ZnCl2 amount, N2 adsorption–desorption isotherms began to turn into Type IV isotherms given by mesoporous adsorbents with its hysteresis loops. Also, their hysteresis loops resembled Type H4 loop generally associated with narrow slit-like pores. Moreover, hydrogen uptakes under 750 mmHg at 77 K were determined to be 1.31, 1.48, and 1.24 wt% for the activated carbons with the maximum surface areas produced from sycamore balls, ripe black locust seed pods, and N. oleander fruits, respectively. As a result, the highest surface areas of the activated carbons with different structural properties produced in this study were obtained with different production conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yahya MA, Al-Qodah Z, Ngah CWZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energy Rev 46:218–235. https://doi.org/10.1016/j.rser.2015.02.051

    Article  CAS  Google Scholar 

  2. Prajapati YN, Verma N (2017) Adsorptive desulfurization of diesel oil using nickel nanoparticle-doped activated carbon beads with/without carbon nanofibers: effects of adsorbate size and adsorbent texture. Fuel 189:186–194. https://doi.org/10.1016/j.fuel.2016.10.044

    Article  CAS  Google Scholar 

  3. Nomanbhay SM, Palanisamy K (2005) Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron J Biotechnol 8(1):43–53. https://doi.org/10.4067/S0717-34582005000100008

    Article  CAS  Google Scholar 

  4. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21(12):2366–2375. https://doi.org/10.1002/adfm.201100058

    Article  CAS  Google Scholar 

  5. Üner O, Bayrak Y (2018) The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax. Microporous Mesoporous Mater 268:225–234. https://doi.org/10.1016/j.micromeso.2018.04.037

    Article  CAS  Google Scholar 

  6. Bedia J, Belver C, Ponce S, Rodriguez J, Rodriguez JJ (2018) Adsorption of antipyrine by activated carbons from FeCl3-activation of Tara gum. Chem Eng J 333:58–65. https://doi.org/10.1016/j.cej.2017.09.161

    Article  CAS  Google Scholar 

  7. Sun K, Leng CY, Jiang JC, Bu Q, Lin GF, Lu XC, Zhu GZ (2017) Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance. New Carbon Mater 32:451–459. https://doi.org/10.1016/S1872-5805(17)60134-3

    Article  Google Scholar 

  8. Hassan AF, Elhadidy H (2017) Production of activated carbons from waste carpets and its application in methylene blue adsorption: kinetic and thermodynamic studies. J Environ Chem Eng 5:955–963. https://doi.org/10.1016/j.jece.2017.01.003

    Article  CAS  Google Scholar 

  9. Yorgun S, Yıldız D (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131. https://doi.org/10.1016/j.jtice.2015.02.032

    Article  CAS  Google Scholar 

  10. Njoku VO, Foo KY, Asif M, Hameed BH (2014) Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption. Chem Eng J 250:198–204. https://doi.org/10.1016/j.cej.2014.03.115

    Article  CAS  Google Scholar 

  11. Yang J, Qiu K (2010) Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem Eng J 165:209–217. https://doi.org/10.1016/j.cej.2010.09.019

    Article  CAS  Google Scholar 

  12. Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E (2008) Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresour Technol 99:6809–6816. https://doi.org/10.1016/j.biortech.2008.01.041

    Article  CAS  Google Scholar 

  13. Stavropoulos GG, Zabaniotou AA (2005) Production and characterization of activated carbons from olive-seed waste residue. Microporous Mesoporous Mater 82:79–85. https://doi.org/10.1016/j.micromeso.2005.03.009

    Article  CAS  Google Scholar 

  14. Beltrame KK, Cazetta AL, de Souza PS, Spessato L, Silva TL, Almeida VC (2018) Adsorption of caffeine on mesoporous activated carbon fibers prepared from pineapple plant leaves. Ecotoxicol Environ Saf 147:64–71. https://doi.org/10.1016/j.ecoenv.2017.08.034

    Article  CAS  Google Scholar 

  15. Gupta H, Singh S (2018) Kinetics and thermodynamics of phenanthrene adsorption from water on orange rind activated carbon. Environ Technol Innov 10:208–214. https://doi.org/10.1016/j.eti.2018.03.001

    Article  Google Scholar 

  16. Hu L, Peng Y, Wu F, Peng S, Li J, Liu Z (2017) Tubular activated carbons made from cotton stalk for dynamic adsorption of airborne toluene. J Taiwan Inst Chem Eng 80:399–405. https://doi.org/10.1016/j.jtice.2017.07.029

    Article  CAS  Google Scholar 

  17. Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020

    Article  CAS  Google Scholar 

  18. Zhu GZ, Deng XL, Hou M, Sun K, Zhang YP, Li P, Liang FM (2016) Comparative study on characterization and adsorption properties of activated carbons by phosphoric acid activation from corncob and its acid and alkaline hydrolysis residues. Fuel Process Technol 144:255–261. https://doi.org/10.1016/j.fuproc.2016.01.007

    Article  CAS  Google Scholar 

  19. Torrellas SÁ, Lovera RG, Escalona N, Sepúlveda C, Sotelo JL, García J (2015) Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions. Chem Eng J 279:788–798. https://doi.org/10.1016/j.cej.2015.05.104

    Article  CAS  Google Scholar 

  20. Li W, Zhang LB, Peng JH, Li N, Zhu XY (2008) Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Ind Crops Prod 27:341–347. https://doi.org/10.1016/j.indcrop.2007.11.011

    Article  CAS  Google Scholar 

  21. Chen W, He F, Zhang S, Xv H, Xv Z (2018) Development of porosity and surface chemistry of textile waste jute-based activated carbon by physical activation. Environ Sci Pollut Res 25(10):9840–9848. https://doi.org/10.1007/s11356-018-1335-5

    Article  CAS  Google Scholar 

  22. Pallarés J, González-Cencerrado A, Arauzo I (2018) Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass Bioenergy 115:64–73. https://doi.org/10.1016/j.biombioe.2018.04.015

    Article  CAS  Google Scholar 

  23. Tran HN, Chao HP, You SJ (2018) Activated carbons from golden shower upon different chemical activation methods: synthesis and characterizations. Adsorpt Sci Technol 36(1–2):95–113. https://doi.org/10.1177/0263617416684837

    Article  CAS  Google Scholar 

  24. Geçgel Ü, Üner O (2018) Adsorption of bovine serum albumin onto activated carbon prepared from Elaeagnus stone. Bull Chem Soc Ethiop 32(1):53–63. https://doi.org/10.4314/bcse.v32i1.5

    Article  CAS  Google Scholar 

  25. Üner O, Geçgel Ü, Kolancilar H, Bayrak Y (2017) Adsorptive removal of rhodamine B with activated carbon obtained from okra wastes. Chem Eng Commun 204(7):772–783. https://doi.org/10.1080/00986445.2017.1319361

    Article  CAS  Google Scholar 

  26. Zubrik A, Matik M, Hredzák S, Lovás M, Danková Z, Kováčová M, Briančin J (2017) Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J Clean Prod 143:643–653. https://doi.org/10.1016/j.jclepro.2016.12.061

    Article  CAS  Google Scholar 

  27. Nayak A, Bhushan B, Gupta V, Sharma P (2017) Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: effect of activation conditions. J Colloid Interface Sci 493:228–240. https://doi.org/10.1016/j.jcis.2017.01.031

    Article  CAS  Google Scholar 

  28. Üner O, Geçgel Ü, Bayrak Y (2015) Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.12.004

    Article  Google Scholar 

  29. Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production—a review. Renew Sustain Energy Rev 11:1966–2005. https://doi.org/10.1016/j.rser.2006.03.013

    Article  CAS  Google Scholar 

  30. Rahman A, Hango HJ, Daniel LS, Uahengo V, Jaime SJ, Bhaskaruni SV, Jonnalagadda SB (2019) Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as impregnating agent for water treatment: an environmentally benevolent approach. J Clean Prod 237:117689. https://doi.org/10.1016/j.jclepro.2019.117689

    Article  CAS  Google Scholar 

  31. Guo J, Lua AC (1999) Textural and chemical characterisations of activated carbon prepared from oil-palm stone with H2SO4 and KOH impregnation. Microporous Mesoporous Mater 32(1–2):111–117. https://doi.org/10.1016/S1387-1811(99)00096-7

    Article  CAS  Google Scholar 

  32. Bedin KC, Martins AC, Cazetta AL, Pezoti O, Almeida VC (2016) KOH-activated carbon prepared from sucrose spherical carbon: adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal. Chem Eng J 286:476–484. https://doi.org/10.1016/j.cej.2015.10.099

    Article  CAS  Google Scholar 

  33. Li S, Han K, Li J, Li M, Lu C (2017) Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater 243:291–300. https://doi.org/10.1016/j.micromeso.2017.02.052

    Article  CAS  Google Scholar 

  34. Hui TS, Zaini MAA (2015) Potassium hydroxide activation of activated carbon: a commentary. Carbon Lett 16(4):275–280. https://doi.org/10.5714/CL.2015.16.4.275

    Article  Google Scholar 

  35. Hassan AF, Youssef AM (2014) Preparation and characterization of microporous NaOH-activated carbons from hydrofluoric acid leached rice husk and its application for lead(II) adsorption. Carbon Lett 15(1):57–66. https://doi.org/10.5714/CL.2014.15.1.057

    Article  Google Scholar 

  36. Pezoti O Jr, Cazetta AL, Souza IP, Bedin KC, Martins AC, Silva TL, Almeida VC (2014) Adsorption studies of methylene blue onto ZnCl2-activated carbon produced from buriti shells (Mauritia flexuosa L.). J Ind Eng Chem 20(6):4401–4407. https://doi.org/10.1016/j.jiec.2014.02.007

    Article  CAS  Google Scholar 

  37. Yagmur E, Gokce Y, Tekin S, Semerci NI, Aktas Z (2020) Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2. Fuel. https://doi.org/10.1016/j.fuel.2020.117232

    Article  Google Scholar 

  38. Márquez-Montesino F, Correa-Méndez F, Glauco-Sánchez C, Zanzi-Vigouroux R, Rutiaga-Quiñones JG, Aguiar-Trujillo L (2015) Pyrolytic degradation studies of Acacia mangium wood. BioResources 10(1):1825–1844. https://doi.org/10.15376/biores.10.1.1825-1844

    Article  Google Scholar 

  39. Lowell S, Shields JE (1991) Powder surface area and porosity, 3rd edn. Chapman Hall, London

    Google Scholar 

  40. Dollimore D, Heal GR (1970) Pore-size distribution in typical adsorbent systems. J Colloid Interface Sci 33:508–519. https://doi.org/10.1016/0021-9797(70)90002-0

    Article  CAS  Google Scholar 

  41. Mukherjee A, Das P, Minu K (2014) Thermogravimetric analysis and kinetic modelling studies of selected agro-residues and biodiesel industry wastes for pyrolytic conversion to bio-oil. Biomass Convers Biorefin 4:259–268. https://doi.org/10.1007/s13399-013-0107-1

    Article  CAS  Google Scholar 

  42. Üner O, Geçgel Ü, Bayrak Y (2016) Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: kinetic, isotherm, thermodynamic, and mechanism analysis. Water Air Soil Pollut 227(7):247. https://doi.org/10.1007/s11270-016-2949-1

    Article  CAS  Google Scholar 

  43. Cagnon B, Py X, Guillot A, Stoeckli F, Chambat G (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour Technol 100:292–298. https://doi.org/10.1016/j.biortech.2008.06.009

    Article  CAS  Google Scholar 

  44. Xie X, Goodell B, Zhang D, Nagle DC, Qian Y, Peterson ML, Jellison J (2009) Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Bioresour Technol 100:1797–1802. https://doi.org/10.1016/j.biortech.2008.09.057

    Article  CAS  Google Scholar 

  45. Haykiri-Acma H, Yaman S, Kucukbayrak S (2010) Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Process Technol 91:759–764. https://doi.org/10.1016/j.fuproc.2010.02.009

    Article  CAS  Google Scholar 

  46. Pappa AA, Tzamtzis NE, Statheropoulos MK, Parissakis GK (1995) Thermal analysis of Pinus halepensis pine-needles and their main components in the presence of (NH4)2HPO4 and (NH4)2SO4. Thermochim Acta 261:165–173. https://doi.org/10.1016/0040-6031(95)02385-F

    Article  CAS  Google Scholar 

  47. Wang J, Zhang M, Chen M, Min F, Zhang S, Ren Z, Yan Y (2006) Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochim Acta 444(1):110–114. https://doi.org/10.1016/j.tca.2006.02.007

    Article  CAS  Google Scholar 

  48. Arcaro S, Maia BGDO, Souza MT, Cesconeto FR, Granados L, Oliveira APND (2016) Thermal insulating foams produced from glass waste and banana leaves. Mater Res 19(5):1064–1069. https://doi.org/10.1590/1980-5373-MR-2015-0539

    Article  CAS  Google Scholar 

  49. Nasrullah A, Saad B, Bhat AH, Khan AS, Danish M, Isa MH, Naeem A (2019) Mangosteen peel waste as a sustainable precursor for high surface area mesoporous activated carbon: characterization and application for methylene blue removal. J Clean Prod 211:1190–1200. https://doi.org/10.1016/j.jclepro.2018.11.094

    Article  CAS  Google Scholar 

  50. Tao J, Huo P, Fu Z, Zhang J, Yang Z, Zhang D (2019) Characterization and phenol adsorption performance of activated carbon prepared from tea residue by NaOH activation. Environ Technol 40:171–181. https://doi.org/10.1080/09593330.2017.1384069

    Article  CAS  Google Scholar 

  51. Silva TL, Cazetta AL, Souza PS, Zhang T, Asefa T, Almeida VC (2018) Mesoporous activated carbon fibers synthesized from denim fabric waste: efficient adsorbents for removal of textile dye from aqueous solutions. J Clean Prod 171:482–490. https://doi.org/10.1016/j.jclepro.2017.10.034

    Article  CAS  Google Scholar 

  52. Cherik D, Louhab K (2017) Preparation of microporous activated carbon from date stones by chemical activation using zinc chloride. Energy Sources Part A Recov Util Environ Effects 39:1935–1941. https://doi.org/10.1080/15567036.2017.1390012

    Article  CAS  Google Scholar 

  53. Zhang Z, Luo X, Liu Y, Zhou P, Ma G, Lei Z, Lei L (2015) A low cost and highly efficient adsorbent (activated carbon) prepared from waste potato residue. J Taiwan Inst Chem Eng 49:206–211. https://doi.org/10.1016/j.jtice.2014.11.024

    Article  CAS  Google Scholar 

  54. Sych NV, Trofymenko SI, Poddubnaya OI, Tsyba MM, Sapsay VI, Klymchuk DO, Puziy AM (2012) Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Appl Surf Sci 261:75–82. https://doi.org/10.1016/j.apsusc.2012.07.084

    Article  CAS  Google Scholar 

  55. Auta M, Hameed BH (2011) Optimized waste tea activated carbon for adsorption of Methylene Blue and Acid Blue 29 dyes using response surface methodology. Chem Eng J 175:233–243. https://doi.org/10.1016/j.cej.2011.09.100

    Article  CAS  Google Scholar 

  56. Karagöz S, Tay T, Ucar S, Erdem M (2008) Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresour Technol 99(14):6214–6222. https://doi.org/10.1016/j.biortech.2007.12.019

    Article  CAS  Google Scholar 

  57. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  58. Abechi SE, Gimba CE, Uzairu A, Dallatu YA (2013) Preparation and characterization of activated carbon from palm kernel shell by chemical activation. Res J Chem Sci 3(7):54–61

    CAS  Google Scholar 

  59. Koçer O, Acemioğlu B (2016) Adsorption of basic green 4 from aqueous solution by olive pomace and commercial activated carbon: process design, isotherm, kinetic and thermodynamic studies. Desalin Water Treat 57(35):16653–16669. https://doi.org/10.1080/19443994.2015.1080194

    Article  CAS  Google Scholar 

  60. Köseoğlu E, Akmil-Başar C (2015) Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol 26(3):811–818. https://doi.org/10.1016/j.apt.2015.02.006

    Article  CAS  Google Scholar 

  61. Cao J, Xiao G, Xu X, Shen D, Jin B (2013) Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Process Technol 106:41–47. https://doi.org/10.1016/j.fuproc.2012.06.016

    Article  CAS  Google Scholar 

  62. Przepiórski J, Skrodzewicz M, Morawski AW (2004) High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl Surf Sci 225(1–4):235–242. https://doi.org/10.1016/j.apsusc.2003.10.006

    Article  CAS  Google Scholar 

  63. Ma Z, Sun Q, Ye J, Yao Q, Zhao C (2016) Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS. J Anal Appl Pyrol 117:116–124. https://doi.org/10.1016/j.jaap.2015.12.007

    Article  CAS  Google Scholar 

  64. Baccar R, Bouzid J, Feki M, Montiel A (2009) Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J Hazard Mater 162:1522–1529. https://doi.org/10.1016/j.jhazmat.2008.06.041

    Article  CAS  Google Scholar 

  65. Mohan PK, Sreelakshmi G, Muraleedharan CV, Joseph R (2012) Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc 62:77–84. https://doi.org/10.1016/j.vibspec.2012.05.002

    Article  CAS  Google Scholar 

  66. Nogales-Bueno J, Baca-Bocanegra B, Rooney A, Hernández-Hierro JM, Byrne HJ, Heredia FJ (2017) Study of phenolic extractability in grape seeds by means of ATR-FTIR and Raman spectroscopy. Food Chem 232:602–609. https://doi.org/10.1016/j.foodchem.2017.04.049

    Article  CAS  Google Scholar 

  67. Wang L, Zhang J, Zhao R, Li Y, Li C, Zhang C (2010) Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: kinetics, isotherms, pH, and ionic strength studies. Bioresour Technol 101(15):5808–5814. https://doi.org/10.1016/j.biortech.2010.02.099

    Article  CAS  Google Scholar 

  68. Gomez-Serrano V, Pastor-Villegas J, Perez-Florindo A, Duran-Valle C, Valenzuela-Calahorro C (1996) FT-IR study of rockrose and of char and activated carbon. J Anal Appl Pyrol 36(1):71–80. https://doi.org/10.1016/0165-2370(95)00921-3

    Article  CAS  Google Scholar 

  69. Yu X, Wang S, Zhang J (2018) Preparation of high adsorption performance activated carbon by pyrolysis of waste polyester fabric. J Mater Sci 53(7):5458–5466. https://doi.org/10.1007/s10853-017-1928-2

    Article  CAS  Google Scholar 

  70. Heo HJ, Park SJ (2015) Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. J Ind Eng Chem 31:330–334. https://doi.org/10.1016/j.jiec.2015.07.006

    Article  CAS  Google Scholar 

  71. Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131(20):7016–7022. https://doi.org/10.1021/ja8083225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Kırklareli University Research Fund (KLÜBAP-180) and Trakya University Research Fund (TÜBAP-2018/136) for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Üner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Üner, O., Geçgel, Ü. & Avcu, T. Comparisons of activated carbons produced from sycamore balls, ripe black locust seed pods, and Nerium oleander fruits and also their H2 storage studies. Carbon Lett. 31, 75–92 (2021). https://doi.org/10.1007/s42823-020-00151-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00151-z

Keywords

Navigation