Skip to main content

Advertisement

Log in

Fabrication of porous carbon beads from polyacrylonitrile as electrode materials for electric double-layer capacitors

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In this study, we developed a facile and template-free strategy for the preparation of activated porous carbon beads (APCBs) from polyacrylonitrile. The chemical activation with KOH was found to enhance the pore properties, such as specific surface area (SSA), pore volume, and pore area. The APCBs exhibited a large SSA of 1147.99 m2/g and a pore area of 131.73 m2/g. The APCB-based electrodes showed a good specific capacitance of 112 F/g at 1 A/g in a 6 M KOH electrolyte, and excellent capacitance retention of 100% at a current density of 5 A/g after 1000 cycles. Therefore, the APCBs prepared in this study can be applied as electrode materials for electric double-layer capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  2. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    Article  CAS  Google Scholar 

  3. Li D, Yu C, Wang M, Zhang Y, Pan C (2014) Synthesis of nitrogen doped graphene from graphene oxide within an ammonia flame for high performance supercapacitors. RSC Adv 4:55394–55399

    Article  CAS  Google Scholar 

  4. Shi K, Ren M, Zhitomirsky I (2014) Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification. ACS Sustain Chem Eng 2:1289–1298

    Article  CAS  Google Scholar 

  5. Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Abe T, Nakanishi K (2016) Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chem Mater 28:3944–3950

    Article  CAS  Google Scholar 

  6. Chen G, Zhai W, Wang Z, Yu J, Wang F, Zhao Y, Li G (2015) Fabrication and supercapacitive properties of hierarchical porous carbon from polyacrylonitrile. Mater Res Bull 72:204–210

    Article  CAS  Google Scholar 

  7. Shu Y, Maruyama J, Iwasaki S, Maruyama S, Shen Y, Uyama H (2017) Fabrication of N-doped and shape-controlled porous monolithic carbons from polyacrylonitrile for supercapacitors. RSC Adv 7:43172–43180

    Article  CAS  Google Scholar 

  8. Heo YJ, Lee HI, Lee JW, Park M, Rhee KY, Park SJ (2019) Optimization of the pore structure of PAN-based carbon fibers for enhanced supercapacitor performances via electrospinning. Compos B 161:10–17

    Article  CAS  Google Scholar 

  9. Drisko GL, Kimling MC, Scales N, Ide A, Sizgek E, Caruso RA, Luca V (2010) One-pot preparation and uranyl adsorption properties of hierarchically porous zirconium titanium oxide beads using phase separation processes to vary macropore morphology. Langmuir 26:17581

    Article  CAS  Google Scholar 

  10. Liu Y, Cao J, Jiang X, Yang Y, Yu L, Yan X (2018) Large scale production of polyacrylonitrile-based porous carbon nanospheres for asymmetric supercapacitors. J Mater Chem A 6:6891–6903

    Article  CAS  Google Scholar 

  11. Zheng L, Li WB, Chen JL (2018) Nitrogen doped hierarchical activated carbons derived from polyacrylonitrile fibers for CO2 adsorption and supercapacitor electrodes. RSC Adv 8:29767–29774

    Article  CAS  Google Scholar 

  12. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  13. Jeong DS, Yun JM, Kim KH (2017) Highly porous nitrogen-doped carbon for superior electric double-layer capacitors. RSC Adv 7:44735–44742

    Article  CAS  Google Scholar 

  14. Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1:16018

    Article  CAS  Google Scholar 

  15. Li L, Li B, Zhang J (2016) Dopamine-mediated fabrication of ultralight graphene aerogels with low volume shrinkage. J Mater Chem A 4:512–518

    Article  CAS  Google Scholar 

  16. Zhang F, Liu T, Li M, Yu M, Luo Y, Tong Y, Li Y (2017) Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett 17:3097–3104

    Article  CAS  Google Scholar 

  17. Wei X, Jiang X, Wei J, Gao S (2016) Effect of KOH activation on the formation of oxygen structure in activated carbons synthesized from polymeric precursor. Chem Mater 28:445–458

    Article  CAS  Google Scholar 

  18. Song LT, Wu ZY, Liang HW, Zhou F, Yu ZY, Xu L, Pan Z, Yu SH (2016) Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy 19:117–127

    Article  CAS  Google Scholar 

  19. Peng L, Liang Y, Dong H, Hu H, Zhao X, Cai Y, Xiao Y, Liu Y, Zheng M (2018) Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors. J Power Sources 377:151–160

    Article  CAS  Google Scholar 

  20. Duan B, Gao X, Yao Y, Huang L, Zhou J, Zhang L (2016) Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27:482–491

    Article  CAS  Google Scholar 

  21. Ma G, Yang D, Nie J (2009) Preparation of porous ultrafine polyacrylonitrile (PAN) fibers by electrospinning. Polym Adv Technol 20:147–150

    Article  CAS  Google Scholar 

  22. Wu M, Wang Q, Li K, Wu Y, Liu H (2012) Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polym Degrad Stabil 97:1511–1519

    Article  CAS  Google Scholar 

  23. Lee BM, Bui VT, Lee HS, Hong SK, Choi HS, Choi JH (2019) Fabrication of hexagonally arranged porous carbon films by proton beam irradiation and carbonization. Radiat Phys Chem 163:18–21

    Article  CAS  Google Scholar 

  24. Lee BM, Nam HG, Choi HY, Hong SK, Jeong YG, Choi JH (2018) Transparent electric heaters based on photoresist-derived carbon micropatterns on quartz plates. Macromol Mater Eng 303:1800296

    Article  Google Scholar 

  25. Du J, Chen A, Yu Y, Zhang Y, Lv H, Liu L (2019) Mesoporous carbon sheets embedded with vesicles for enhanced supercapacitor performance. J Mater Chem A 7:15707–15713

    Article  CAS  Google Scholar 

  26. Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211

    Article  CAS  Google Scholar 

  27. Tanaka S, Doi A, Matsui T, Miyake Y (2013) Mass transport and electrolyte accessibility through hexagonally ordered channels of self-assembled mesoporous carbons. J Power Sources 228:24–31

    Article  CAS  Google Scholar 

  28. Kim M, Oh I, Kim J (2015) Superior electric double layer capacitors using micro- and mesoporous silicon carbide sphere. J Mater Chem A 3:3944–3951

    Article  CAS  Google Scholar 

  29. Lee BM, Eom JJ, Baek GY, Hong SK, Jeun JP, Choi JH, Yun JM (2019) Cellulose non-woven fabric-derived porous carbon films as binder-free electrodes for supercapacitors. Cellulose 26:4529–4540

    CAS  Google Scholar 

  30. Wang C, O’Connell MJ, Chan CK (2015) Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis. ACS Appl Mater Interfaces 7:8952–8960

    Article  CAS  Google Scholar 

  31. Zhou M, Pu F, Wang Z, Guan S (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194

    Article  CAS  Google Scholar 

  32. Lai F, Feng J, Yan R, Wang GC, Antonietti M, Oschatz M (2018) Breaking the limits of ionic liquid-based supercapacitors: mesoporous carbon electrodes functionalized with manganese oxide nanosplotches for dense, stable, and wide-temperature energy storage. Adv Funct Mater 28:1801298

    Article  Google Scholar 

  33. Gao F, Shao G, Qu J, Lv S, Li Y, Wu M (2015) Tailoring of porous and nitrogen-rich carbons derived from hydrochar for high-performance supercapacitor electrodes. Electrochim Acta 155:201–208

    Article  CAS  Google Scholar 

  34. Ling Z, Wang Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J (2016) Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26(2016):111–119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (no. 20164010201070) and by the research fund of Chungnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hak Choi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, BM., Choi, BS., Lee, JY. et al. Fabrication of porous carbon beads from polyacrylonitrile as electrode materials for electric double-layer capacitors. Carbon Lett. 31, 67–74 (2021). https://doi.org/10.1007/s42823-020-00150-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00150-0

Keywords

Navigation