Skip to main content
Log in

Development and characterization of a PDMS-based masking method for microfabricated Oral drug delivery devices

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

With the growing popularity and application of microfabricated devices in oral drug delivery (ODD), masking technologies for drug loading and surface modification become highly relevant. Considering the speed of design and fabrication processes and the necessity for continuous alterations of e.g. the shape and sizes of the devices during the optimization process, there is a need for adaptable, precise and low-cost masking techniques. Here, a novel method is presented for masking ODD microdevices, namely microcontainers, using the physical characteristics of polydimethylsiloxane (PDMS). When compared to a rigid microfabricated shadow mask, used for filling drugs in microcontainers, the PDMS masking technique allows more facile and precise loading of higher quantities of an active compound, without the need of alignment. The method provides flexibility and is adjustable to devices fabricated from different materials with various geometries, topologies and dimensions. This user-friendly flexible masking method overcomes the limitations of other masking techniques and is certainly not limited to ODD and is recommended for a wide range of microdevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Z. Abid, C. Gundlach, O. Durucan, C. von Halling Laier, L.H. Nielsen, A. Boisen, S.S. Keller, Microelectron. Eng. 171, 20 (2017)

    Article  Google Scholar 

  • Z. Abid, S. Strindberg, M.M. Javed, C. Mazzoni, L. Vaut, L.H. Nielsen, C. Gundlach, R.S. Petersen, A. Müllertz, A. Boisen, S.S. Keller, Lab Chip 19, 2905 (2019)

    Article  Google Scholar 

  • H. Becker, C. Gärtner, Anal. Bioanal. Chem. 390, 89 (2008)

    Article  Google Scholar 

  • J. Chen, M. Chu, K. Koulajian, X.Y. Wu, A. Giacca, Y. Sun, Biomed. Microdevices 11, 1251 (2009)

    Article  Google Scholar 

  • X. Chen, N. Qu, H. Li, D. Zhu, Adv. Mech. Eng. 6, 943092 (2014)

    Article  Google Scholar 

  • X. Chen, N. Qu, H. Li, Z. Xu, Appl. Surf. Sci. 343, 141 (2015)

    Article  Google Scholar 

  • H.D. Chirra, T.A. Desai, Small 8, 3839 (2012)

    Article  Google Scholar 

  • A.J. Chung, Y.S. Huh, D. Erickson, Biomed. Microdevices 11, 861–867 (2009)

  • C.G. Courcimault, M.G. Allen, in Nanotechnology (2004)

  • L. Dorogin, B.N.J. Persson, Soft Matter 14, 1142 (2018)

    Article  Google Scholar 

  • C.B. Fox, J. Kim, L.V. Le, C.L. Nemeth, H.D. Chirra, T.A. Desai, J. Control. Release 219, 431 (2015)

    Article  Google Scholar 

  • C.B. Fox, Y. Cao, C.L. Nemeth, H.D. Chirra, R.W. Chevalier, A.M. Xu, N.A. Melosh, T.A. Desai, ACS Nano 10, 5873 (2016)

    Article  Google Scholar 

  • C.B. Fox, C.L. Nemeth, R.W. Chevalier, J. Cantlon, D.B. Bogdanoff, J.C. Hsiao, T.A. Desai, Bioeng. Transl. Med. 2, 9 (2017)

    Article  Google Scholar 

  • M.T. Ghannam, M.N. Esmail, Ind. Eng. Chem. Res. 37, 1335 (1998)

    Article  Google Scholar 

  • L. Jiang, X. Wang, L. Chi, Small 7, 1309 (2011)

    Article  Google Scholar 

  • J.R. Jørgensen, M.L. Jepsen, L.H. Nielsen, M. Dufva, H.M. Nielsen, T. Rades, A. Boisen, A. Müllertz, Eur. J. Pharm. Biopharm. 143, 98 (2019)

    Article  Google Scholar 

  • K. J. V. and S. G. V. K. Varadan, in Smart Mater. Syst. MEMS Des. Dev. Methodol. (John Wiley & Sons, 2006), pp. 43–62

  • S.S. Keller, F.G. Bosco, A. Boisen, Microelectron. Eng. 110, 427 (2013)

    Article  Google Scholar 

  • N. Kimura, M. Maeki, M. Tokeshi, Microfluid. Pharm. Appl. 123 (2019)

  • Y. Luo, A. Cavus, M.C. Tamargo, J. Wan, F.H. Pollak, J. Vac, Sci. Technol. B Microelectron. Nanom. Struct. 16, 1312 (1998)

    Article  Google Scholar 

  • P. Marizza, L. Pontoni, T. Rindzevicius, J.F. Alopaeus, K. Su, J.A. Zeitler, S.S. Keller, I. Kikic, M. Moneghini, N. De Zordi, D. Solinas, A. Cortesi, A. Boisen, J. Supercrit. Fluids 107, 145 (2016)

    Article  Google Scholar 

  • F.J. Martin, C. Grove, Biomed. Microdevices 3, 97 (2001)

    Article  Google Scholar 

  • C. Mazzoni, F. Tentor, S.S. Andersen, L.H. Nielsen, S.S. Keller, T.S. Alstrom, C. Gundlach, A. Mullertz, P. Marizza, A. Boisen, J. Control. Release 268, 343 (2017)

    Article  Google Scholar 

  • L.H. Nielsen, S.S. Keller, K.C. Gordon, A. Boisen, T. Rades, A. Müllertz, Eur. J. Pharm. Biopharm. 81, 418 (2012)

    Article  Google Scholar 

  • L.H. Nielsen, J. Nagstrup, S. Gordon, S.S. Keller, J. Østergaard, T. Rades, A. Müllertz, A. Boisen, Biomed. Microdevices 17, 55 (2015)

    Article  Google Scholar 

  • L.H. Nielsen, A. Melero, S.S. Keller, J. Jacobsen, T. Garrigues, T. Rades, A. Müllertz, A. Boisen, Int. J. Pharm. 504, 98 (2016)

    Article  Google Scholar 

  • L.H. Nielsen, S.S. Keller, A. Boisen, Lab Chip 18, 2348 (2018)

    Article  Google Scholar 

  • C. Roh, J. Lee, and C. Kang, Materials (Basel). 9, 836 (2016)

  • A. Sayah, V.K. Parashar, A.-G. Pawlowski, M.A.M. Gijs, Sensors Actuators A Phys. 125, 84 (2005)

    Article  Google Scholar 

  • T. Schallenberg, C. Schumacher, S. Gundel, W. Faschinger, in Thin Solid Films (2002)

  • F. Schneider, J. Draheim, R. Kamberger, U. Wallrabe, Sensors Actuators A 151, 95 (2009)

    Article  Google Scholar 

  • S. Selvarasah, S.H. Chao, C.L. Chen, S. Sridhar, A. Busnaina, A. Khademhosseini, M.R. Dokmeci, Sensors actuators. A Phys. 145–146, 306 (2008)

    Google Scholar 

  • V. Silverio and S. Cardoso de Freitas, in Complex Fluid-Flows Microfluid. (Springer International Publishing, Cham, 2018), pp. 25–51

  • T.W. Sowers, R. Sarkar, S.E. Prameela, E. Izadi, J. Rajagopalan, Soft Matter 12, 5818 (2016)

    Article  Google Scholar 

  • S.K. Srivastava, F. Ajalloueian, A. Boisen, Adv. Mater. 31, 1901573 (2019)

    Article  Google Scholar 

  • S.L. Tao, T.A. Desai, Adv. Drug Deliv. Rev. 55, 315 (2003)

    Article  Google Scholar 

  • S.L. Tao, T.A. Desai, Adv. Mater. 17, 1625 (2005)

    Article  Google Scholar 

  • L. Vaut, K.E. Jensen, G. Tosello, A. Khosla, H. Furukawa, A. Boisen, J. Electrochem. Soc. 166, B3257 (2019)

    Article  Google Scholar 

  • L. Vaut, J. Juszczyk, K. Kamguyan, K. Jensen, G. Tosello, And a. Boisen. ACS Biomater Sci Eng (2020)

  • H. H. Winter and F. Chambon, J. Rheol. (N. Y. N. Y). 30, 367 (1986)

  • X. Wu, K.H. Gulden, M. Thomas, G. Wilson, J. Walker, G.H. Döhler, J.R. Whinnery, And J. S. Smith. J. Cryst. Growth (1993)

  • H. Zhang, J.K. Jackson, M. Chiao, Adv. Funct. Mater. 27, 1703606 (2017)

    Article  Google Scholar 

  • A. Zosel, J. Adhes. 34, 201 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Novo Nordisk Foundation (NNF17OC0026910) for funding the project MIMIO – Microstructures, microbiota and oral delivery and Danmarks Grundforskningsfond og Villum Fondens Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) whose research is funded by the Danish National Research Foundation (DNRF122) and Villum Fonden (Grant No. 9301).

The authors would like to thank Zarmeena Abid from National Center for Nanofabrication and Characterization, Technical University of Denmark for supplying the PCL microcontainers for this project and Jesper Scheel from the Department of Health Technology, Technical University of Denmark for photography of the PDMS mask fabrication process.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Funding

This research was financially supported by the Danish National Research Foundation (DNRF122), Villum Fonden (Grant No. 9301) and the Novo Nordisk Foundation (NNF17OC0026910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khorshid Kamguyan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 4129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamguyan, K., Thamdrup, L.H.E., Vaut, L. et al. Development and characterization of a PDMS-based masking method for microfabricated Oral drug delivery devices. Biomed Microdevices 22, 35 (2020). https://doi.org/10.1007/s10544-020-00490-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00490-8

Keywords

Navigation