Skip to main content
Log in

Membrane Contacts in Plasmodesmata: Structural Components and Their Functions

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Plasmodesmata (PD) are intercellular channels in plant tissues providing continuity of the cytoplasm, the plasma membrane (PM) and the endoplasmic reticulum (ER) of neighboring cells. These channels allow the active transport of macromolecules such as proteins or RNAs. Thus, PD are believed to play a critical role in the functional unity of plant tissues and the transport of signals required for plant development and responses to external stimuli. Recent findings indicate that the PD channel contains a specialized type of ER-PM membrane contact sites (MCSs), structural links formed between ER and PM with tethering proteins. As shown for animal cells, MCSs are essential for lipid and protein trafficking between ER and PM membranes as well as for stress responses or the maintenance of ER structural integrity. On the other hand, our knowledge of the PD-specific MCSs is still scarce, and experimentally supported models of organization of their structural elements are only starting to emerge. Here, we review the structural and functional properties of proteins that can take part in establishing MCSs in PD. We also discuss the significance of cytoskeleton, lipid membrane microdomains and cell wall components for the maintenance and remodeling of PD-specific MCS in response to various biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

GIPC:

glycosyl inositol phosphoryl ceramide

GPI:

glycosylphosphatidylinositol

LC:

liquid crystal

Lo:

LC ordered membrane microdomains

LTP:

lipid transfer protein

MC:

membrane contact

MCS:

membrane contact site

PA:

phosphatidic acid

PI(4,5)P2 :

phosphatidylinositol 4,5-bisphosphate

PI(4)P:

phosphatidylinositol 4-phosphate

PIP:

phosphatidylinositol phosphate

PDCB:

plasmodesmata callose-binding family

PM:

plasma membrane

PS:

phosphatidylserine

RTNLB:

reticulon-like protein

SEL:

size-exclusion limi

REFERENCES

  1. Tilsner, J., Nicolas, W., Rosado, A., and Bayer, E. M. (2016) Staying tight: plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants, Annu. Rev. Plant Biol., 67, 23.1-23.28, doi: 10.1146/annurev-arplant-043015-111840.

    Article  CAS  Google Scholar 

  2. Prinz, W. A., Toulmay, A., and Balla, T. (2020) The functional universe of membrane contact sites, Nat. Rev. Mol. Cell Biol., 21, 7-24, doi: 10.1038/s41580-019-0180-9.

    Article  CAS  PubMed  Google Scholar 

  3. Alpy, F., Rousseau, A., Schwab, Y., Legueux, F., Stoll, I., Wendling, C., Spiegelhalter, C., Kessler, P., Mathelin, C., Rio., M. C., Levine, T. P., and Tomasetto, C. (2013) STARD3/STARD3NL and VAP make a novel molecular tether between late endosomes and the ER, J. Cell Sci., 126, 5500-5512, doi: 10.1242/jcs.139295.

    Article  CAS  PubMed  Google Scholar 

  4. Iwasawa, R., Mahul-Mellier, A. L., Datler, C., Pazarentzos, E., and Grimm, S. (2011) Fis1 and Bap31 bridge the mitochondria–ER interface to establish a platform for apoptosis induction, EMBO J., 30, 556-568, doi: 10.1038/emboj.2010.346.

    Article  CAS  PubMed  Google Scholar 

  5. Hanada, K. (2018) Lipid transfer proteins rectify inter-organelle flux and accurately deliver lipids at membrane contact sites, J. Lipid Res., 59, 1341-1366, doi: 10.1194/jlr.R085324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, P., Richardson, C., Hawkins, T. J., Sparkes, I., Hawes, C., and Hussey, P. J. (2016) Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development, New Phytol., 210, 1311-1326, doi: 10.1111/nph.13857.

    Article  CAS  PubMed  Google Scholar 

  7. Levy, A., Zheng, J. Y., and Lazarowitz, S. G. (2015) Synaptotagmin SYTA forms ER-plasma membrane junctions that are recruited to plasmodesmata for plant virus movement, Curr. Biol., 25, 2018-2025, doi: 10.1016/j.cub.2015.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, L., and Li, J. (2019) Communications between the endoplasmic reticulum and other organelles during abiotic stress response in plants, Front. Plant Sci., 10, 749, doi: 10.3389/fpls.2019.00749.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Michaud, M., and Jouhet, J. (2019) Lipid trafficking at membrane contact sites during plant development and stress response, Front. Plant Sci., 10, 2, doi: 10.3389/fpls.2019.00002.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bayer, E. M., Mongrand, S., and Tilsner, J. (2014) Specialized membrane domains of plasmodesmata, plant intercellular nanopores, Front. Plant Sci., 5, 507, doi: 10.3389/fpls.2014.00507.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Petit, J. D., Immel, F., Lins, L., and Bayer, E. M. (2019) Lipids or proteins: who is leading the dance at membrane contact sites, Front. Plant Sci., 10, 198, doi: 10.3389/fpls.2019.00198.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ding, B., Turgeon, R., and Parthasarathy, M. V. (1992) Substructure of freeze-substituted plasmodesmata, Protoplasma, 169, 28-41, doi: 10.1007/BF01343367.

    Article  Google Scholar 

  13. Nicolas, W. J., Grison M. S., Trépout, S., Gaston, A., Fouché, M., Cordelières, F. P., Oparka, K., Tilsner, J., Brocard, L., and Bayer, E. M. (2017) Architecture and permeability of post-cytokinesis plasmodesmata lacking cytoplasmic sleeves, Nat. Plants., 3, 17082, doi: 10.1038/nplants.2017.82.

    Article  CAS  PubMed  Google Scholar 

  14. Faulkner, C., and Maule, A. (2011) Opportunities and successes in the search for plasmodesmal proteins, Protoplasma, 248, 27-38, doi: 10.1007/s00709-010-0213-x.

    Article  CAS  PubMed  Google Scholar 

  15. Salmon, M. S., and Bayer, E. M. F. (2013) Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics, Front. Plant Sci., 3, 307, doi: 10.3389/fpls. 2012.00307.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kraner, M. E., Müller, C., and Sonnewald, U. (2017) Comparative proteomic profiling of the Choline transporter-like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves, Plant J., 92, 696-709, doi: 10.1111/tpj.13702.

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez-Calvino, L., Faulkner, C., Walshaw, J., Saalbach, G., Bayer, E., Benitez-Alfonso, Y., and Maule, A. (2011) Arabidopsis plasmodesmal proteome, PLoS One., 6, e18880, doi: 10.1371/journal.pone.0018880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thomas, C. L., Bayer, E. M., Ritzenthaler, C., Fernandez-Calvino, L., and Maule, A. J. (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication, PLoS Biol., 6, e7, doi: 10.1371/journal. pbio. 0060007.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim, H., Kwon, H., Kim, S., Kim, M. K., Botella, M. A., Yun, H. S., and Kwon, C. (2016) Synaptotagmin 1 negatively controls the two distinct immune secretory pathways to powdery mildew fungi in Arabidopsis, Plant Cell Physiol., 57, 1133-1141, doi: 10.1093/pcp/pcw061.

    Article  CAS  PubMed  Google Scholar 

  20. Simpson, C., Thomas, C., Findlay, K., Bayer, E., and Maule, A. J. (2009) An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking, Plant Cell., 21, 581-594, doi: 10.1105/tpc.108.060145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grison, M. S., Kirk, P., Brault, M. L., Wu, X. N., Schulze, W. X., Benitez-Alfonso, Y., Immel, F., and Bayer E. M. (2019) Plasma membrane-associated receptor-like kinases relocalize to plasmodesmata in response to osmotic stress, Plant Physiol., 181, 142-160, doi: 10.1104/pp.19.00473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hunter, K., Kimura, S., Rokka, A., Tran, H. C., Toyota, M., Kukkonen, J. P., and Wrzaczek, M. (2019) CRK2 Enhances salt tolerance by regulating callose deposition in connection with PLDα1, Plant Physiol., 180, 2004-2021, doi: 10.1104/pp.19.00560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ham, B. K., Li, G., Kang, B. H., Zeng, F., and Lucas, W. J. (2012) Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development, Plant Cell, 24, 3630-3648, doi: 10.1105/tpc.112.101063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Knox, K., Wang, P., Kriechbaumer, V., Tilsner, J., Frigerio, L., Sparkes, I., Hawes, C., and Oparka, K. (2015) Putting the squeeze on plasmodesmata: a role for reticulons in primary plasmodesmata formation, Plant Physiol., 168, 1563-1572, doi: 10.1104/pp.15.00668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pérez-Sancho, J., Vanneste, S., Lee, E., McFarlane, H. E., Esteban Del Valle, A., Valpuesta, V., Friml, J., Botella, M. A., and Rosado, A. (2015) The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses, Plant Physiol., 168, 132-143, doi: 10.1104/pp.15.00260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brault, M. L., Petit, J. D., Immel, F., Nicolas, W. J., Glavier, M., Brocard, L., Gaston, A., Fouché, M., Hawkins, T. J., Crowet, J. M., Grison, M. S., Germain, V., Rocher, M., Kraner, M., Alva, V., Claverol, S., Paterlini, A., Helariutta, Y., Deleu, M., Lins, L., Tilsner, J., and Bayer, E. M. (2019) Multiple C2-domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata, EMBO Rep., 20, e47182, doi: 10.15252/embr.201847182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, P., Hawkins, T. J., Richardson, C., Cummins, I., Deeks, M. J., Sparkes, I., Hawes, C., and Hussey, P. J. (2014) The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum, Curr. Biol., 24, 1397-1405, doi: 10.1016/j. cub. 2014.05.003.

    Article  CAS  PubMed  Google Scholar 

  28. Kagiwada, S., and Hashimoto, M. (2007) The yeast VAP homolog Scs2p has a phosphoinositide-binding ability that is correlated with its activity, Biochem. Biophys. Res. Commun., 364, 870-876, doi: 10.1016/j.bbrc.2007.10.079.

    Article  CAS  PubMed  Google Scholar 

  29. Chang, C. L., Hsieh, T. S., Yang, T. T., Rothberg, K. G., Azizoglu, D. B., Volk, E., Liao, J. C., and Liou, J. (2013) Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions, Cell Rep., 5, 813-825, doi: 10.1016/j.celrep.2013.09.038.

    Article  CAS  PubMed  Google Scholar 

  30. Murphy, S. E., and Levine, T. P. (2016) VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome, Biochim. Biophys. Acta, 1861, 952-961, doi: 10.1016/j.bbalip.2016.02.009.

    Article  CAS  PubMed  Google Scholar 

  31. Kriechbaumer, V., Botchway, S. W., Slade, S. E., Knox, K., Frigerio, L., Oparka, K., and Hawes, C. (2015) Reticulomics: protein–protein interaction studies with two plasmodesmata-localized reticulon family proteins identify binding partners enriched at plasmodesmata, endoplasmic reticulum, and the plasma membrane, Plant Physiol., 169, 1933-1945, doi: 10.1104/pp.15.01153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deeks, M. J., Calcutt, J. R., Ingle, E. K., Hawkins, T. J., Chapman, S., Richardson, A. C., Mentlak, D. A., Dixon, M. R., Cartwright, F., Smertenko, A. P., Oparka, K., and Hussey, P. J. (2012) A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants, Curr. Biol., 22, 1595-1600, doi: 10.1016/j.cub.2012.06.041.

    Article  CAS  PubMed  Google Scholar 

  33. Siao, W., Wang, P., Voigt, B., Hussey, P. J., and Baluska, F. (2016) Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum-plasma membrane contact sites, J. Exp. Bot., 67, 6161-6171, doi: 10.1093/jxb/erw381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishikawa, K., Tamura, K., Fukao, Y., and Shimada, T. (2019) Structural and functional relationships between plasmodesmata and plant endoplasmic reticulum-plasma membrane contact sites consisting of three synaptotagmins, New Phytol., 226, 798-808, doi: 10.1111/nph.16391.

    Article  CAS  Google Scholar 

  35. Fernández-Busnadiego, R., Saheki, Y., and De Camilli, P. (2015) Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites, Proc. Natl. Acad. Sci. USA, 112, E2004-E2013, doi: 10.1073/pnas.1503191112.

    Article  CAS  PubMed  Google Scholar 

  36. Schauder, C. M., Wu, X., Saheki, Y., Narayanaswamy, P., Torta, F., Wenk, M. R., De Camilli, P., and Reinisch, K. M. (2014) Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer, Nature, 510, 552-555, doi: 10.1038/nature13269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reinisch, K. M., and De Camilli, P. (2016) SMP-domain proteins at membrane contact sites: Structure and function, Biochim. Biophys. Acta, 1861, 924-927, doi: 10.1016/j. bbalip. 2015.12.003.

    Article  CAS  PubMed  Google Scholar 

  38. Dalal, J., Lewis, D. R., Tietz, O., Brown, E. M., Brown, C. S., Palme, K., Muday, G. K., and Sederoff, H. W. (2016) ROSY1, a novel regulator of gravitropic response is a stigmasterol binding protein, J. Plant Physiol., 196-197, 28-40, doi: 10.1016/j.jplph.2016.03.011.

    Article  CAS  PubMed  Google Scholar 

  39. Ho, C. M., Paciorek, T., Abrash, E., and Bergmann, D. C. (2016) Modulators of stomatal lineage signal transduction alter membrane contact sites and reveal specialization among ERECTA kinases, Dev. Cell, 38, 345-357, doi: 10.1016/j.devcel.2016.07.016.

    Article  CAS  PubMed  Google Scholar 

  40. Schapire, A. L., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., Salinas, J., Mancuso, S., Valpuesta, V., Baluska, F., and Botella, M. A. (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability, Plant Cell, 20, 3374-3388, doi: 10.1105/tpc.108.063859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamazaki, T., Kawamura, Y., Minami, A., and Uemura, M. (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1, Plant Cell, 20, 3389-3404, doi: 10.1105/tpc.108.062679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dickson, E. J., Jensen, J. B., and Hille, B. (2016) Regulation of calcium and phosphoinositides at endoplasmic reticulum-membrane junctions, Biochem. Soc. Trans., 44, 467-473, doi: 10.1042/BST20150262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bayer, E. M., Sparkes, I., Vanneste, S., and Rosado, A. (2017) From shaping organelles to signalling platforms: the emerging functions of plant ER-PM contact sites, Curr. Opin. Plant Biol., 40, 89-96, doi: 10.1016/j.pbi.2017.08.006.

    Article  CAS  PubMed  Google Scholar 

  44. Held, K., Pascaud, F., Eckert, C., Gajdanowicz, P., Hashimoto, K., Corratgé-Faillie, C., Offenborn, J. N., Lacombe, B., Dreyer, I., Thibaud, J. B., and Kudla, J. (2011) Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex, Cell Res., 21, 1116-1130, doi: 10.1038/cr.2011.50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Musetti, R., Buxa, S. V., De Marco, F., Loschi, A., Polizzotto, R., Kogel, K. H., and van Bel, A. J. (2013) Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage, Mol. Plant Microbe Interact., 26, 379-386, doi: 10.1094/MPMI-08-12-0207-R.

    Article  CAS  PubMed  Google Scholar 

  46. Liu, L., Liu, C., Hou, X., Xi, W., Shen, L., Tao, Z., Wang, Y., and Yu, H. (2012) FTIP1 is an essential regulator required for florigen transport, PLoS Biol., 10, e1001313, doi: 10.1371/journal.pbio.1001313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vaddepalli, P., Herrmann, A., Fulton, L., Oelschner, M., Hillmer, S., Stratil, T. F., Fastner, A., Hammes, U. Z., Ott, T., Robinson, D. G., and Schneitz, K. (2014) The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana, Development, 141, 4139-4148, doi: 10.1242/dev.113878.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, L., Li, C., Song, S., Teo, Z. W. N., Shen, L., Wang, Y., Jackson, D., and Yu, H. (2018) FTIP-dependent STM trafficking regulates shoot meristem development in Arabidopsis, Cell Rep., 23, 1879-1890, doi: 10.1016/j.celrep.2018.04.033.

    Article  CAS  PubMed  Google Scholar 

  49. Robyn, L., Overall, R. L., and Blackman, L. M. (1996) A model of the macromolecular structure of plasmodesmata, Trends Plant Sci., 1, 307-311, doi: 10.1016/S1360-1385(96)88177-0.

    Article  Google Scholar 

  50. Knight, A. E., and Kendrick-Jones, J. (1993) A myosin-like protein from a higher plant, J. Mol. Biol., 231, 148-154, doi: 10.1006/jmbi.1993.1266.

    Article  CAS  PubMed  Google Scholar 

  51. Haraguchi, T., Tominaga, M., Matsumoto, R., Sato, K., Nakano, A., Yamamoto, K., and Ito, K. (2014) Molecular characterization and subcellular localization of Arabidopsis class VIII myosin, ATM1, J. Biol. Chem., 289, 12343-12355, doi: 10.1074/jbc.M113.521716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Su, S., Liu, Z., Chen, C., Zhang, Y., Wang, X., Zhu, L., Miao, L., Wang, X. C., and Yuan, M. (2010) Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco, Plant Cell, 22, 1373-1387, doi: 10.1105/tpc.108.064212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Amari, K., Di Donato, M., Dolja, V. V., and Heinlein, M. (2014) Myosins VIII and XI play distinct roles in reproduction and transport of tobacco mosaic virus, PLoS Pathog., 10, e1004448, doi: 10.1371/journal.ppat.1004448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Van Vliet, A. R., Giordano, F., Gerlo, S., Segura, I., Van Eygen, S., Molenberghs, G., Rocha, S., Houcine, A., Derua, R., Verfaillie, T., Vangindertael, J., De Keersmaecker, H., Waelkens, E., Tavernier, J., Hofkens, J., Annaert, W., Carmeliet, P., Samali, A., Mizuno, H., and Agostinis, P. (2017) The ER stress sensor PERK coordinates ER-plasma membrane contact site formation through interaction with filamin-A and F-actin remodeling, Mol. Cell, 65, 885-899.e6, doi: 10.1016/j.molcel.2017.01.020.

    Article  CAS  PubMed  Google Scholar 

  55. Hepler, P. K. (2016) The Cytoskeleton and its regulation by calcium and protons, Plant Physiol., 170, 3-22, doi: 10.1104/pp.15.01506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bürstenbinder, K., Möller, B., Plötner, R., Stamm, G., Hause, G., Mitra, D., and Abel, S. (2017) The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus, Plant Physiol., 173, 1692-1708, doi: 10.1104/pp. 16.01743.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pankratenko, A. V., Atabekova, A. K., Lazareva, E. A., Baksheeva, V. E., Zhironkina, O. A., Zernii, E. Y., Owens, R. A., Solovyev, A. G., and Morozov, S. Y. (2017) Plant-specific 4/1 polypeptide interacts with an endoplasmic reticulum protein related to human BAP31, Planta, 245, 193-205, doi: 10.1007/s00425-016-2601-8.

    Article  CAS  PubMed  Google Scholar 

  58. Makarova, S. S., Minina, E. A., Makarov, V. V., Semenyuk, P. I., Kopertekh, L., Schiemann, J., Serebryakova, M. V., Erokhina, T. N., Solovyev, A. G., and Morozov, S. Y. (2011) Orthologues of a plant-specific At-4/1 gene in the genus Nicotiana and the structural properties of bacterially expressed 4/1 protein, Biochimie, 93, 1770-1778, doi: 10.1016/j.biochi.2011.06.018.

    Article  CAS  PubMed  Google Scholar 

  59. Solovyev, A. G., Minina, E. A., Makarova, S. S., Erokhina, T. N., Makarov, V. V., Kaplan, I. B., Kopertekh, L., Schiemann, J., Richert-Pöggeler, K. R., and Morozov, S. Y. (2013) Subcellular localization and self-interaction of plant-specific Nt-4/1 protein, Biochimie, 95, 1360-1370, doi: 10.1016/j.biochi.2013.02.015.

    Article  CAS  PubMed  Google Scholar 

  60. Morozov, S. Y., Makarova, S. S., Erokhina, T. N., Kopertekh, L., Schiemann, J., Owens, R. A., and Solovyev, A. G. (2014) Plant 4/1 protein: potential player in intracellular, cell-to-cell and long-distance signaling, Front. Plant Sci., 5, 26, doi: 10.3389/fpls.2014.00026.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Atabekova, A. K., Lazareva, E. A., Strelkova, O. S., Solovyev, A. G., and Morozov, S. Y. (2018) Mechanical stress-induced subcellular re-localization of N-terminally truncated tobacco Nt-4/1 protein, Biochimie, 144, 98-107, doi: 10.1016/j.biochi.2017.10.020.

    Article  CAS  PubMed  Google Scholar 

  62. Atabekova, A. K., Pankratenko, A. V., Makarova, S. S., Lazareva, E. A., Owens, R. A., Solovyev, A. G., and Morozov, S. Y. (2017) Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins, Biochimie, 132, 28-37, doi: 10.1016/j.biochi.2016.10.009.

    Article  CAS  PubMed  Google Scholar 

  63. Müller, M., Richter, K., Heuck, A., Kremmer, E., Buchner, J., Jansen, R. P., and Niessing, D. (2009) Formation of She2p tetramers is required for mRNA binding, mRNP assembly, and localization, RNA, 15, 2002-2012, doi: 10.1261/rna.1753309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grison, M. S., Brocard, L., Fouillen, L., Nicolas, W., Wewer, V., Dörmann, P., Nacir, H., Benitez-Alfonso, Y., Claverol, S., Germain, V., Boutté, Y., Mongrand, S., and Bayer, E. M. (2015) Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis, Plant Cell, 27, 1228-1250, doi: 10.1105/tpc.114.135731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Marsh, D. (2010) Liquid-ordered phases induced by cholesterol: a compendium of binary phase diagrams, Biochim. Biophys. Acta, 1798, 688-699, doi: 10.1016/j.bbamem.2009.12.027.

    Article  CAS  PubMed  Google Scholar 

  66. Javanainen, M., Martinez-Seara, H., and Vattulainen, I. (2017) Nanoscale membrane domain formation driven by cholesterol, Sci. Rep., 7, 1143, doi: 10.1038/s41598-017-01247-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dufourc, E. J. (2008) Sterols and membrane dynamics, J. Chem. Biol., 1, 63-77, doi: 10.1007/s12154-008-0010-6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Milovanovic, D., Honigmann, A., Koike, S., Göttfert, F., Pähler, G., Junius, M., Müllar, S., Diederichsen, U., Janshoff, A., Grubmüller, H., Risselada, H. J., Eggeling, C., Hell, S. W., van den Bogaart G., and Jahn, R. (2015) Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains, Nat. Commun., 6, 5984, doi: 10.1038/ncomms6984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leijon, F., Melzer, M., Zhou, Q., Srivastava, V., and Bulone, V. (2018) Proteomic analysis of plasmodesmata from populus cell suspension cultures in relation with callose biosynthesis, Front. Plant Sci., 9, 1681, doi: 10.3389/fpls.2018.01681.

    Article  PubMed  PubMed Central  Google Scholar 

  70. De Almeida, R. F., and Joly, E. (2014) Crystallization around solid-like nanosized docks can explain the specificity, diversity, and stability of membrane microdomains, Front. Plant Sci., 5, 72, doi: 10.3389/fpls.2014.00072.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gronnier, J., Germain, V., Gouguet, P., Cacas, J. L., and Mongrand, S. (2016) GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth, Plant Signal. Behav., 11, e1152438, doi: 10.1080/15592324.2016.1152438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Grosjean, K., Mongrand, S., Beney, L., Simon-Plas, F., and Gerbeau-Pissot, P. (2015) Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols, J. Biol. Chem., 290, 5810-5825, doi: 10.1074/jbc.M114.598805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Konrad, S. S., and Ott, T. (2015) Molecular principles of membrane microdomain targeting in plants, Trends Plant Sci., 20, 351-361, doi: 10.1016/j.tplants.2015.03.016.

    Article  CAS  PubMed  Google Scholar 

  74. Cannon, K. S., Woods, B. L., Crutchley, J. M., and Gladfelter, A. S. (2019) An amphipathic helix enables septins to sense micrometer-scale membrane curvature, J. Cell Biol., 218, 1128-1137, doi: 10.1083/jcb.201807211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baoukina, S., Ingólfsson, H. I., Marrink, S. J., and Tieleman, D. P. (2018) Curvature-induced sorting of lipids in plasma membrane tethers, Adv. Theory Simul., 1, 1800034, doi: 10.1002/adts.201800034.

    Article  CAS  Google Scholar 

  76. Aimon, S., Callan-Jones, A., Berthaud, A., Pinot, M., Toombes, G. E., and Bassereau, P. (2014) Membrane shape modulates transmembrane protein distribution, Dev. Cell., 28, 212-218, doi: 10.1016/j.devcel.2013.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Makowski, S. L., Kuna, R. S., and Field, S. J. (2019) Induction of membrane curvature by proteins involved in Golgi trafficking, Adv. Biol. Regul., 75, 100661, doi: 10.1016/j.jbior.2019.100661.

    Article  CAS  PubMed  Google Scholar 

  78. González-Solís, A., Cano-Ramírez, D. L., Morales-Cedillo, F., Tapia de Aquino, C., and Gavilanes-Ruiz, M. (2014) Arabidopsis mutants in sphingolipid synthesis as tools to understand the structure and function of membrane microdomains in plasmodesmata, Front.Plant Sci., 5, 3, doi: 10.3389/fpls.2014.00003.

    Article  PubMed  PubMed Central  Google Scholar 

  79. De Saint-Jean, M., Delfosse, V., Douguet, D., Chicanne, G., Payrastre, B., Bourguet, W., Antonny, B., and Drin, G. (2011) Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers, J. Cell Biol., 195, 965-978, doi: 10.1083/jcb.201104062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Martens, S., Kozlov, M. M., and McMahon, H. T. (2007) How synaptotagmin promotes membrane fusion, Science, 316, 1205-1208, doi: 10.1126/science.1142614.

    Article  CAS  PubMed  Google Scholar 

  81. Eisenberg-Bord, M., Shai, N., Schuldiner, M., and Bohnert, M. (2016) A tether is a tether is a tether: tethering at membrane contact sites, Dev. Cell, 39, 395-409, doi: 10.1016/j.devcel.2016.10.022.

    Article  CAS  PubMed  Google Scholar 

  82. Wong, L. H., Gatta, A. T., and Levine, T. P. (2019) Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes, Nat. Rev. Mol. Cell Biol., 20, 85-101, doi: 10.1038/s41580-018-0071-5.

    Article  CAS  PubMed  Google Scholar 

  83. Drin, G., Casella, J. F., Gautier, R., Boehmer, T., Schwartz, T. U., and Antonny, B. (2007) A general amphipathic a-helical motif for sensing membrane curvature, Nat. Struct. Mol. Biol., 14, 138-146, doi: 10.1038/nsmb1194.

    Article  CAS  PubMed  Google Scholar 

  84. Simon, M. L., Platre, M. P., Assil, S., van Wijk, R., Chen, W. Y., Chory, J., Dreux, M., Munnik, T., and Jaillais, Y. (2014) A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis, Plant J., 77, 322-37, doi: 10.1111/tpj.12358.

    Article  CAS  PubMed  Google Scholar 

  85. Simon, M. L., Platre, M. P., Marquès-Bueno, M. M., Armengot, L., Stanislas, T., Bayle, V., Caillaud, M. C., and Jaillais, Y. (2016) A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants, Nat. Plants, 2, 16089, doi: 10.1038/nplants.2016.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Platre, M. P., Noack, L. C., Doumane, M., Bayle, V., Simon, M. L. A., Maneta-Peyret, L., Fouillen, L., Stanislas, T., Armengot, L., Pejchar, P., Caillaud, M. C., Potocký, M., Copic, A., Moreau, P., and Jaillais, Y. (2018) A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes, Dev. Cell., 45, 465-480.e11, doi: 10.1016/j.devcel.2018.04.011.

    Article  CAS  PubMed  Google Scholar 

  87. Bian, X., Saheki, Y., and De Camilli, P. (2018) Ca2+ releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport, EMBO J., 37, 219-234, doi: 10.15252/embj.201797359.

    Article  CAS  PubMed  Google Scholar 

  88. Himschoot, E., Pleskot, R., Van Damme, D., and Vanneste, S. (2017) The ins and outs of Ca2+ in plant endomembrane trafficking, Curr. Opin. Plant Biol., 40, 131-137, doi: 10.1016/j.pbi.2017.09.003.

    Article  CAS  PubMed  Google Scholar 

  89. Graber, Z. T., Shi, Z., and Baumgart, T. (2017) Cations induce shape remodeling of negatively charged phospholipid membranes, Phys. Chem. Chem. Phys., 19, 15285-15295, doi: 10.1039/c7cp00718c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lahiri, S., Toulmay, A., and Prinz, W. A. (2015) Membrane contact sites, gateways for lipid homeostasis, Curr. Opin. Cell Biol., 33, 82-87, doi: 10.1016/j.ceb.2014.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Olkkonen, V. M. (2015) OSBP-related protein family in lipid transport over membrane contact sites, Lipid Insights, 8, 1-9, doi: 10.4137/LPI.S31726.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Chung, J., Torta, F., Masai, K., Lucast, L., Czapla, H., Tanner, L. B., Narayanaswamy, P., Wenk, M. R., Nakatsu, F., and De Camilli, P. (2015) PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER–plasma membrane contacts, Science, 349, 428-432, doi: 10.1126/science.aab1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ghai, R., Du, X., Wang, H., Dong, J., Ferguson, C., Brown, A. J., Parton, R. G., Wu, J. W., and Yang, H. (2017) ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P2) and regulate its level at the plasma membrane, Nat. Commun., 8, 757, doi: 10.1038/s41467-017-00861-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yamaji, T., Kumagai, K., Tomishige, N., and Hanada, K. (2008) Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism, IUBMB Life, 60, 511-518, doi: 10.1002/iub.83.

    Article  CAS  PubMed  Google Scholar 

  95. McMahon, H. T., and Boucrot, E. (2015) Membrane curvature at a glance, J. Cell Sci., 128, 1065-1070, doi: 10.1242/jcs.114454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sager, R., and and Lee, J. Y. (2014) Plasmodesmata in integrated cell signalling: insights from development and environmental signals and stresses, J. Exp. Bot., 65, 6337-6358, doi: 10.1093/jxb/eru365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dorokhov, Y. L., Ershova, N. M., Sheshukova, E. V., and Komarova, T. V. (2019) Plasmodesmata Conductivity Regulation: A Mechanistic Model, Plants (Basel), 8, E595, doi: 10.3390/plants8120595.

    Article  CAS  Google Scholar 

  98. De Storme, N., and Geelen, D. (2014) Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance, Front Plant Sci., 5, 138, doi: 10.3389/fpls.2014.00138.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Paul, L. K., Rinne, P. L., and van der Schoot, C. (2014) Refurbishing the plasmodesmal chamber: a role for lipid bodies, Front. Plant Sci., 5, 40, doi: 10.3389/fpls.2014.00040.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lee, J. Y., Wang, X., Cui, W., Sager, R., Modla, S., Czymmek, K., Zybaliov, B., van Wijk, K., Zhang, C., Lu, H., and Lakshmanan, V. (2011) A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis, Plant Cell, 23, 3353-3373, doi: 10.1105/tpc.111.087742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, X., Sager, R., Cui, W., Zhang, C., Lu, H., and Lee, J. Y. (2013) Salicylic acid regulates plasmodesmata closure during innate immune responses in Arabidopsis, Plant Cell, 25, 2315-2329, doi: 10.1105/tpc.113.110676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gui, J., Liu, C., Shen, J., and Li, L. (2014) Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance, Plant Physiol., 166, 1463-1478, doi: 10.1104/pp.114.246769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Perraki, A., Binaghi, M., Mecchia, M. A., Gronnier, J., German-Retana, S., Mongrand, S., Bayer, E., Zelada, A. M., and Germain, V. (2014) StRemorin1.3 hampers potato virus X TGBp1 ability to increase plasmodesmata permeability, but does not interfere with its silencing suppressor activity, FEBS Lett., 588, 1699-1705, doi: 10.1016/j.febslet.2014.03.014.

    Article  CAS  PubMed  Google Scholar 

  104. Zavaliev, R., Dong, X., and Epel, B. L. (2016) Glycosylphosphatidylinositol (GPI) modification serves as a primary plasmodesmal sorting signal, Plant Physiol., 172, 1061-1073, doi: 10.1104/pp.16.01026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Faulkner, C., Akman, O. E., Bell, K., Jeffree, C., and Oparka, K. (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco, Plant Cell., 20, 1504-1518, doi: 10.1105/tpc.107.056903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morvan, O., Quentin, M., Jauneau, A., Mareck, A., and Morvan, C. (1998) Immunogold localization of pectin methylesterases in the cortical tissues of flax hypocotyl, Protoplasma, 202, 175-184, doi: 10.1007/BF01282545.

    Article  CAS  Google Scholar 

  107. Yu, C. H., Guo, G. Q., Nie, X. W., and Zheng, G. C. (2004) Cytochemical localization of pectinase activity in pollen mother cells of tobacco during meiotic prophase I and Its relation to the formation of secondary plasmodesmata and cytoplasmic channels, Acta Bot. Sin., 46, 1443-1453.

    Google Scholar 

  108. Baluska, F., Samaj, J., Napier, R., and Volkmann, D. (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex, Plant J., 19, 481-488, doi: 10.1046/j.1365-313x.1999.00530.x.

    Article  CAS  PubMed  Google Scholar 

  109. Foreman, J., Demidchik, V., Bothwell, J. H. F., Mylona, P., Miedema, H., Torresk, M. A., Linstead, P., Costa, S., Brownlee, C., Jonesk, J. D. G., Davies, J. M., and Dolan, L. (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth, Nature, 422, 442-446, doi: 10.1038/nature01485.

    Article  CAS  PubMed  Google Scholar 

  110. Benitez-Alfonso, Y., and Jackson, D. (2009) Redox homeostasis regulates plasmodesmal communication in Arabidopsis meristems, Plant Signal. Behav., 4, 655-659, doi: 10.4161/psb.4.7.8992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu, K., and Nagy, P. D. (2014) Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication, Curr. Opin. Virol., 9, 119-126, doi: 10.1016/j.coviro.2014.09.015.

    Article  CAS  PubMed  Google Scholar 

  112. Barajas, D., Xu, K., Fernandez de Castro Martin, I., Sasvari, Z., Brandizzi, F., Risco, C., and Nagy, P. D. (2014) Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites, PLoS Pathog., 10, e1004388, doi: 10.1371/journal.ppat.1004388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pitzalis, N., and Heinlein, M. (2017) The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement, J. Exp. Bot., 69, 117-132, doi: 10.1093/jxb/erx334.

    Article  CAS  PubMed  Google Scholar 

  114. Epel, B. L. (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1,3-glucanases, Semin. Cell Dev. Biol., 20, 1074-1081, doi: 10.1016/j.semcdb.2009.05.010.

    Article  CAS  PubMed  Google Scholar 

  115. Zavaliev, R., Levy, A., Gera, A., and Epel, B. L. (2013) Subcellular dynamics and role of arabidopsis β-1,3-glucanases in cell-to-cell movement of tobamoviruses, Mol. Plant Microbe Interact., 26, 1016-1030, doi: 10.1094/MPMI-03-13-0062-R.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project No. 17-14-01032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Solovyev.

Ethics declarations

The article does not contain studies using humans or animals performed by any of the authors. The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankratenko, A., Atabekova, A., Morozov, S. et al. Membrane Contacts in Plasmodesmata: Structural Components and Their Functions. Biochemistry Moscow 85, 531–544 (2020). https://doi.org/10.1134/S0006297920050028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920050028

Keywords

Navigation