Skip to main content
Log in

BW5147 and Derivatives for the Study of T Cells and their Antigen Receptors

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Like B cells, T cells can be immortalized through hybridization with lymphoma cells, a technique that has been particularly useful in the study of the T cell receptors (TCR) for antigen. In T cell hybridizations, the AKR mouse strain-derived thymus lymphoma BW5147 is by far the most popular fusion line. However, the full potential of this technology had to await inactivation of the productively rearranged TCR-α and -β genes in the lymphoma. BWα-β-, the TCR-gene deficient variant of the original lymphoma, which has become the fusion line of choice for αβ T cells, is now available with numerous modifications, enabling the investigation of many aspects of TCR-mediated responses and TCR-structure. Unexpectedly, inactivating BW’s functional TCR-α gene also rendered the lymphoma more permissive for the expression of TCR-γδ, facilitating the study of γδ T cells, their TCRs, and their TCR-mediated reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bank I, DePinHo RA, Brenner MB et al (1986) A functional T3 molecule associated with a novel heterodimer on the surface of immature human thymocytes. Nature 322:179–181

    Article  CAS  PubMed  Google Scholar 

  • Blackman M, Yague J, Kubo R et al (1986) The T cell recpertoire may be biased in favor of MHC recognition. Cell 47:349–357

    Article  CAS  PubMed  Google Scholar 

  • Bolliger L, Johansson B (1999) Identification and functional characterization of the zeta-chain dimerization motif for TCR surface expression. J Immunol 163:3867–3876

    CAS  PubMed  Google Scholar 

  • Born W, Yague J, Palmer E et al (1985) Rearrangement of T-cell receptor b-chain genes during T-cell development. Proc Natl Acad Sci USA 82:2925–2929

    Article  CAS  PubMed  Google Scholar 

  • Born W, Rathbun G, Tucker P et al (1986) Synchronized rearrangement of T-cell γ and β chain genes in fetal thymocyte development. Science 234:479–482

    Article  CAS  PubMed  Google Scholar 

  • Born W, Miles C, White J et al (1987) Peptide sequences of T-cell receptor δ and γ chains are identical to predicted X and γ proteins. Nature 330:572–574

    Article  CAS  PubMed  Google Scholar 

  • Born W, White J, Kappler J et al (1988) Rearrangement of IgH genes in normal thymocyte development. J Immunol 140:3228–3232

    CAS  PubMed  Google Scholar 

  • Born W, Cady C, Jones-Carson J et al (1999) Immunoregulatory functions of gammadelta T cells. Adv Immunol 71:77–144

    Article  CAS  PubMed  Google Scholar 

  • Born WK, Kemal Aydintug M, O'Brien R (2013) Diversity of gammadelta T-cell antigens. Cell Mol Immunol 10:13–20

    Article  CAS  PubMed  Google Scholar 

  • Brenner MB, McLean J, Dialynas DP et al (1986) Identification of a putative second T-cell receptor. Nature 322:145–149

    Article  CAS  PubMed  Google Scholar 

  • Burgert HG, White J, Weltzien HU et al (1989) Reactivity of VB17A+ CD8+ T cell hybrids: analysis using a new CD8+ T cell fusion partner. J Exp Med 170:1887–1904

    Article  CAS  PubMed  Google Scholar 

  • Burnet FM (1959) The clonal selection theory of acquired immunity. Cambridge University Press, London

    Book  Google Scholar 

  • Carbone AM, Marrack P, Kappler JW (1988a) De-methylation of the CD8 gene in CD4+ murine T cells suggests that CD4+ cells develop from CD8+ precursors. Science 242:1174–1176

    Article  CAS  PubMed  Google Scholar 

  • Carbone AM, Marrack P, Kappler JW (1988b) Remethylation at sites 5″ of the murine Lyt-2 gene in association withshutdown of Lyt-2 expression. J Immunol 141:1369–1375

    CAS  PubMed  Google Scholar 

  • Chien Y, Becker DM, Lindsten T et al (1984) A third type of murine T-cell receptor gene. Nature 312:31–35

    Article  CAS  PubMed  Google Scholar 

  • Chien YH, Iwashima M, Kaplan K et al (1987) A new T-cell receptor gene located within the alpha locus and expressed early in T-cell differentiation. Nature 327:677–682

    Article  CAS  PubMed  Google Scholar 

  • DiGiusto DL, Palmer E (1994) An analysis of sequence variation in the beta chain framework and complementary determining regions of an allo-reactive T cell receptor. Mol Immunol 31:693–699

    Article  CAS  PubMed  Google Scholar 

  • Dunst J, Glaros V, Englmaier L et al (2020) Recognition of synthetic polyanionic ligands underlies “spontaneous” reactivity of Vgamma1gammadeltaTCRs. J Leukoc Biol. https://doi.org/10.1002/JLB.2MA1219-392R

    Article  PubMed  PubMed Central  Google Scholar 

  • Eshar Z, Apte RN, Lowy I et al (1980) T-cell hybridoma bearing heavy chain variable region determinants producing (T,G)-A-L-specific helper factor. Nature 286:270–272

    Article  Google Scholar 

  • Fu YX, Vollmer M, Kalataradi H et al (1994) Structural requirements for peptides that stimulate a subset of γδ T cells. J Immunol 152:1578–1588

    CAS  PubMed  Google Scholar 

  • Goldsby RA, Osborne BA, Simpson E et al (1977) Hybrid cell lines with T-cell characteristics. Nature 267:707–708

    Article  CAS  PubMed  Google Scholar 

  • Gorer PA, Kaliss N (1959) The effect of isoantibodies in vivo on three different transplantable neoplasms in mice. Cancer Res 19:824–830

    CAS  PubMed  Google Scholar 

  • Hammerling GJ (1977) T lymphocyte tissue culture lines produced by cell hybridization. Eur J Immunol 7:743–746

    Article  CAS  PubMed  Google Scholar 

  • Happ MP, Kubo RT, Palmer E et al (1989) Limited receptor repertoire in a mycobacteria-reactive subset of γδ T lymphocytes. Nature 342:696–698

    Article  CAS  PubMed  Google Scholar 

  • Harwell L, Skidmore B, Marrack P et al (1980) Concanavalin A-inducible, interleukin-2-producing T cell hybridoma. J Exp Med 152:893–904

    Article  CAS  PubMed  Google Scholar 

  • Haskins K, Kubo R, White J et al (1983) The major histocompatibility complex-restricted antigen receptor on T cells. I. Isolation with a monoclonal antibody. J Exp Med 157:1149–1169

    Article  CAS  PubMed  Google Scholar 

  • Haskins K, Hannum C, White J et al (1984) The major histocompatibility complex-restricted antigen receptor on T cells. VI. An antibody to a receptor allotype. J Exp Med 160:452–471

    Article  CAS  PubMed  Google Scholar 

  • Hayday AC, Saito H, Gillies SD et al (1985) Structure, organization, and somatic rearrangement of T cell gamma genes. Cell 40:259–269

    Article  CAS  PubMed  Google Scholar 

  • Hedrick SM, Cohen DI, Nielsen EA et al (1984) Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308:149–153

    Article  CAS  PubMed  Google Scholar 

  • Holst J, Wang H, Durick Eder K et al (2008) Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat Immunol 9:658–666

    Article  CAS  PubMed  Google Scholar 

  • Hyman R, Stallings V (1974) Complementation patterns of Thy-1 variants and evidence that antigen loss variants “pre-exist” in the parental population. J Natl Cancer Inst 52:429–436

    Article  CAS  PubMed  Google Scholar 

  • Kao FT, Puck TT (1969) Genetics of somatic mammalian cells. IX. Quantitation of mutagenesis by physical and chemical agents. J Cell Physiol 74:245–258

    Article  CAS  PubMed  Google Scholar 

  • Kapp JA, Araneo BA, Clevinger BL (1980) Suppression of antibody and T cell proliferative responses to l-glutamic acid60-l-alanine30-l-tyrosine 10 by a specific monoclonal T cell factor. J Exp Med 152:235–240

    Article  CAS  PubMed  Google Scholar 

  • Kappler JW, Skidmore B, White J et al (1981) Antigen-inducible, H-2-restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition. J Exp Med 153:1198–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappler J, White J, Wegmann D et al (1982) Antigen presentation by Ia+ B cell hybridomas to H-2 restricted T cell hybridomas. Proc Natl Acad Sci USA 79:3604–3607

    Article  CAS  PubMed  Google Scholar 

  • Kappler J, Kubo R, Haskins K et al (1983a) The major histocompatibility complex-restricted antigen receptor on T cells in mouse and man: identification of constant and variable peptides. Cell 35:295–302

    Article  CAS  PubMed  Google Scholar 

  • Kappler J, Kubo R, Haskins K et al (1983b) The mouse T cell receptor: comparison of MHC-restricted receptors on two T cell hybridomas. Cell 34:727–737

    Article  CAS  PubMed  Google Scholar 

  • Katz DH, Bechtold TE, Altman A (1980) Construction of T cell hybridomas secreting allogeneic effect factor. J Exp Med 152:956–968

    Article  CAS  PubMed  Google Scholar 

  • Kearney JF, Radbruch A, Liesegang B et al (1979) A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol 123:1548–1550

    CAS  PubMed  Google Scholar 

  • Kisielow J, Tortola L, Weber J et al (2011) Evidence for the divergence of innate and adaptive T-cell precursors before commtment to the alphabeta and gammadelta lineages. Blood 118:6591–6600

    Article  CAS  PubMed  Google Scholar 

  • Kisielow J, Obermair FJ, Kopf M (2019) Deciphering CD4+ T cell specificity using novel MHC–TCR chimeric receptors. Nat Immunol 20:652–662

    Article  CAS  PubMed  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  • Köhler G, Milstein C (1976) Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol 6:511–519

    Article  PubMed  Google Scholar 

  • Köhler GI, Lefkovitz I, Elliott B et al (1977) Derivation of hybrids between a thymoma line and spleen cells activated in a mixed leucocyte reaction. Eur J Immunol 7:758–761

    Article  PubMed  Google Scholar 

  • Kontiainen S, Simpson E, Bohrer E et al (1978) T-cell lines producing antigen-specific suppressor factor. Nature 274:477–480

    Article  CAS  PubMed  Google Scholar 

  • Letourneur G, Malissen B (1989) Derivation of a T cell hybridoma variant deprived of functional T cell receptor α and β chain transcripts reveals a nonfunctional α-mRNA of BW5147 origin. Eur J Immunol 19:2269–2274

    Article  CAS  PubMed  Google Scholar 

  • Marrack P, Hannum C, Harris M et al (1983a) Antigen-specific, major histocompatibility complex-restricted T cell receptors. Immunol Rev 76:131–145

    Article  CAS  PubMed  Google Scholar 

  • Marrack P, Shimonkevitz R, Hannum C et al (1983b) The major histocompatibility complex-restricted antigen receptor on T cells. IV. An antiidiotypic antibody predicts both antigen and I-specificity. J Exp Med 158:1635–1646

    Article  CAS  PubMed  Google Scholar 

  • O'Brien RL, Happ MP, Dallas A et al (1989) Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen derived from Mycobacterium tuberculosis. Cell 57:667–674

    Article  CAS  PubMed  Google Scholar 

  • O'Brien RL, Fu YX, Cranfill R et al (1992) Heat shock protein Hsp-60 reactive γδ cells: A large, diversified T lymphocyte subset with highly focused specificity. Proc Natl Acad Sci USA 89:4348–4352

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S (1998) Hybridomas, T cell. In: Delves P, Roitt I (eds) Encyclopedia of immunology, vol 2, 2nd edn. Academic Press, New York, pp 1152–1154

    Chapter  Google Scholar 

  • Rock EP, Sibbald PR, Davis MM et al (1994) CDR3 length in antigen-specific immune receptors. J Exp Med 179:323–328

    Article  CAS  PubMed  Google Scholar 

  • Roehm N, Herron L, Cambier J et al (1984) The major histocompatibility complex-restricted antigen receptor on T cells: distribution on thymus and peripheral T cells. Cell 38:577–584

    Article  CAS  PubMed  Google Scholar 

  • Sanderson S, Shastri N (1994) LacZ inducible, antigen/MHC-specific T cell hybrids. Int Immunol 6:369–376

    Article  CAS  PubMed  Google Scholar 

  • Shulman MC, Wilde D, Köhler G (1978) A better cell line for making hybridomas secreting specific antibodies. Nature 276:269–270

    Article  CAS  PubMed  Google Scholar 

  • Subach FV, Subach OM, Gundorov IS et al (2009) Monomeric fluorescent timers that chnage color from blue to red report on cellular trafficking. Nat Chem Biol 5:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi M, Miller JF (1978) Specific suppressive factors produced by hybridomas derived from the fusion of enriched suppressor T cell and a T lymphoma cell line. J Exp Med 148:373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taussig MJ, Corvalan JR, Binns RM et al (1979) Production of an H-2-related suppressor factor by a hybrid T cell line. Nature 277:305–308

    Article  CAS  PubMed  Google Scholar 

  • van Essen D, Engist B, Natoli G et al (2009) Two modes of transcriptional activation at native promoters by NF-kappaB p65. PLoS Biol 7:e73

    PubMed  Google Scholar 

  • Watson J (1979) Continuous proliferation of murine antigen-specific helper T lymphocytes in culture. J Exp Med 150:1510–1519

    Article  CAS  PubMed  Google Scholar 

  • White J, Haskins KM, Marrack P et al (1983) Use of I region-restricted, antigen-specific T cell hybridomas to produce indiotypically specific anti-receptor antibodies. J Immunol 130:1033–1037

    CAS  PubMed  Google Scholar 

  • White J, Blackman M, Bill J et al (1989) Two better cell lines for making hybridomas expressing specific T cell receptors. J Immunol 143:1822–1825

    CAS  PubMed  Google Scholar 

  • White J, Pullen A, Choi K et al (1993) Antigen recognition properties of mutant Vbeta3+ T cell receptors are consistent with an imunoglobulin-like structure for the receptor. J Exp Med 177:119–125

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Jin N, Nakayama M et al (2010) Gamma delta T cell receptors confer autonomous responsiveness to the insulin-peptide B:9–23. J Autoimmun 34:478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the continued encouragement and support by Drs. Philippa Marrack and John Kappler.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

The preparation of the manuscript was a joint effort by the authors.

Corresponding author

Correspondence to Willi K. Born.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest or competing interests.

Consent for publication

The authors declare their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, J., O’Brien, R.L. & Born, W.K. BW5147 and Derivatives for the Study of T Cells and their Antigen Receptors. Arch. Immunol. Ther. Exp. 68, 15 (2020). https://doi.org/10.1007/s00005-020-00579-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00005-020-00579-1

Keywords

Navigation