Skip to main content
Log in

Irreversibility Analysis for Double Diffusive Convection Flow of a Gas Mixture in a Chamfered Corners Square Enclosure Filled with a Porous Medium

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An analysis of thermodynamic irreversible principle (TPI), through determination of entropy generation rate, during double-diffusive convection in an octagonal shape, filled with saturated fluid in a porous enclosure, is numerically investigated in this work, by studying the influence of thermodiffusion effect on entropy generation variations. According to the fluid flow evolution under consideration, the influence of mass flux due to temperature gradient is incorporated into the governing equations of the problem, which are solved numerically, using the COMSOL software. Appropriated thermal and solutal Dirichlet boundary conditions are used under the Boussinesq approximation. For the porous medium, the Darcy–Brinkman model is assumed in coupling with energy and mass transfer balance equations. The flow model is described in terms of mass flux due to temperature gradient, buoyancy ratio, thermal Rayleigh number and porosity of the medium. Results of the variations of heat transfer and entropy generation in the studied enclosure are graphically illustrated and are basically discussed, through various physical aspects of the problem. The numerical computations are presented for various values of thermal Rayleigh number (RaT), thermal diffusion parameter (Kt), Darcy number (Da), buoyancy ratio (N) and porosity of the medium (ε). In addition, the total entropy generation due to thermal, species and mixed diffusion gradients; Darcy–Brinkman dissipation; and fluid friction are studied and discussed. It is found that the entropy generation increases strongly when passing from the cooperative case of buoyancy forces to the opposite case. A similar behaviour is obtained with increasing the thermal diffusion ratio, at a constant buoyancy ratio. Also, an accentuated increase in entropy generation is observed when the Darcy number exceeds the value 10−6. Moreover, the results show that the augmentation of the thermodiffusion effect induces an increase in total entropy generation, at fixed value of the porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C :

Concentration (mol m−3)

Da:

Darcy number

D CT :

Thermal diffusion coefficient (mol m−1 s−1 K−1)

D e :

Molecular diffusivity (m2 s−1)

g :

Gravitational acceleration (m s−2)

H :

Cavity height (m)

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability (m2)

Le:

Lewis number

N :

Buoyancy ratio (GrS/GrT)

Nu:

Average Nusselt number

p :

Pressure (kg m−1 s−2)

P :

Dimensionless pressure

Pr:

Prandtl number

R k :

Thermal conductivity ratio (km/kf)

Ra:

Rayleigh number

RaT :

Thermal porous Rayleigh number

Kt :

Soret parameter

S gen :

Total dimensionless entropy generation

T′:

Temperature (K)

T :

Dimensionless temperature T0 = (Th′ + Tc′)/2

t, τ :

Dimensional and dimensionless time

u, v :

Velocity components in x and y directions (m s−1)

U, V :

Dimensionless velocity components

x, y :

Cartesian coordinates (m)

X, Y :

Dimensionless Cartesian coordinates

α e :

Effective thermal diffusivity (m2 s−1)

ε :

Medium porosity

μ :

Kinematic (m2 s−1)

μ eff :

Viscosity (kg m−1 S−1)

\( \varLambda \) :

Viscosity ratio (μeff/μ)

ρ :

Density (kg m−3)

σ :

Specific heat ratio [(ρc)m/(ρc)f]

Ω :

Temperature ratio ∆T/T0

Ω′:

Concentration ratio ∆C/C0

0:

Reference

c:

Cold wall

d:

Dimensional

e:

Effective

f:

Fluid

h:

Hot wall

m:

Porous

References

  1. Bella, C.S.; Naikoti, K.: Soret and Dufour effects on free convective heat and solute transfer in fluid saturated inclined porous cavity. Eng. Sci. Technol. Int. J. 18(4), 543–554 (2015)

    Google Scholar 

  2. Wang, J.; Yang, M.; Zhang, Y.: Coupling-diffusive effects on thermosolutal buoyancy convection in a horizontal cavity. Numer. Heat Transf. A 68, 583–597 (2015)

    Google Scholar 

  3. Srinivasacharya, D.; Mallikarjuna, B.; Bhuvanavijaya, R.: Soret and Dufour effects on mixed convection along a vertical wavy surface in a porous medium with variable properties. Numer. Heat Transf. Ain Shams Eng. J. 6, 553–564 (2015)

    MATH  Google Scholar 

  4. Kalendar, A.; Kalendar, A.; Alhendal, Y.; Karar, S.; Alenzi, A.; Oosthuizen, P.: Natural convective heat transfer from the horizontal isothermal surface of polygons of octagonal and hexagonal shapes. J. Therm. Sci. Eng. Appl. 11, 1–13 (2019)

    Google Scholar 

  5. Mohammed, A.A.; Khudheyer, A.F.: Natural convection heat transfer inside enclosure with various geometries and enhancement methods a review. Int. J. Eng. Technol. 7(4), 4892–4898 (2018)

    Google Scholar 

  6. Saleh, H.; Alsabery, A.I.; Hashim, I.: Natural convection in polygonal enclosures with inner circular cylinder. Adv. Mech. Eng. 7(12), 1–10 (2015)

    Google Scholar 

  7. Parvin, S.; Nasrin, R.: Effects of Reynolds and Prandtl number on mixed convection in an octagonal channel with a heat-generating hollow cylinder. J. Sci. Res. 4(2), 337–348 (2012)

    Google Scholar 

  8. Saha, G.; Saha, S.; Hasan, M.N.; Islam, M.Q.: Natural convection heat transfer within octagonal enclosure. Int. J. Eng. Trans. A 23(1), 1–10 (2010)

    Google Scholar 

  9. Castillo, V.M.; Hoover, W.G.: Entropy production and Lyapunov instability at the onset of turbulent convection. Phys. Rev. E 58(6), 7350 (1998)

    Google Scholar 

  10. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes, 3rd edn. Wiley, New York (1967)

    MATH  Google Scholar 

  11. Bejan, A.: Second-law analysis in heat transfer and thermal design. Adv. Heat Transf. 15, 1–58 (1982)

    Google Scholar 

  12. Bouabid, M.; Hidouri, N.; Magherbi, M.; Brahim, A.B.: Numerical heat and mass transfer for Hartmann and Dufour’s effects on irreversibilities at double-diffusive natural convection in a square cavity. JACE 7, 1–11 (2017)

    Google Scholar 

  13. Bouabda, R.; Bouabid, M.; Brahim, A.B.; Magherbi, M.: Numerical study of entropy generation in mixed MHD convection in a square lid-driven cavity filled with Darcy–Brinkman–Forchheimer porous medium. Entropy 18, 1–10 (2016)

    Google Scholar 

  14. Hidouri, N.; Mchirgui, A.; Magherbi, M.; Brahim, A.B.: Numerical investigation of entropy generation for double-diffusive convection with Soret effect in a square porous cavity using Darcy–Brickman model. J. Porous Med. 16, 811–822 (2013)

    Google Scholar 

  15. Khadiri, A.; Amahmid, A.; Hasnaoui, M.; Rtibi, A.: Soret effect on double-diffusive convection in a square porous cavity heated and salted from below. Numer. Heat Transf. A Appl. 57, 848–868 (2010)

    Google Scholar 

  16. Srinivasacharya, D.; Reddy, G.S.: Double diffusive natural convection in power-law fluid saturated porous medium with Soret and Dufour effects. J. Braz. Soc. Mech. Sci. Eng. 34, 525–530 (2012)

    MATH  Google Scholar 

  17. Mchirgui, A.; Hidouri, N.; Magherbi, M.; Brahim, A.B.: Entropy generation in double diffusive convection in a square porous cavity. Adv. Fluid Mech. Heat Mass Transf. 12, 99–104 (2012)

    MATH  Google Scholar 

  18. Ziapour, B.M.; Rahimi, F.: Numerical study of natural convection heat transfer in a horizontal wavy absorber solar collector based on the second law analysis. Int. J. Eng. Trans. A 29(1), 109–117 (2016)

    Google Scholar 

  19. Al-Zamily, A.; Amin, M.R.: Natural convection and entropy generation in a nanofluid-filled semi-circular enclosure with heat flux source. Procedia Eng. 105, 418–424 (2015)

    Google Scholar 

  20. Woods, L.C.: The Thermodynamics of Fluid Systems. Oxford University Press, Oxford (1975)

    Google Scholar 

  21. Hidouri, N.; Abbassi, N.; Magherbi, M.; Brahim, A.B.: Entropy generation in double-diffusive convection in presence of the Soret effect. Prog. Comput. Fluid Dyn. 7, 237–246 (2007)

    MATH  Google Scholar 

  22. Al-Hadhrami, A.K.; Elliott, L.; Ingham, D.B.: A new model for viscous dissipation in porous media across a range of permeability values. Transp. Porous Med. 53, 117–122 (2003)

    MathSciNet  Google Scholar 

  23. Kramer, J.; Jecl, R.; Skerget, L.: Boundary domain integral method for the study of double diffusive natural convection in porous media. Eng. Anal. Bound. Elem. 31, 897–905 (2007)

    MATH  Google Scholar 

  24. Lauriat, G.; Prasad, V.; Skerget, L.: Natural convection in a vertical porous cavity: a numerical study for Brinkman-extended Darcy formulation. J. Heat Transf. 109, 688–696 (1987)

    Google Scholar 

  25. Saabas, H.J.; Baliga, B.R.: Co-located equal-order control-volume finite-element method for multidimensional, incompressible. Fluid flow-part I: formulation. Numer. Heat Transf. 26, 381–407 (1994)

    MATH  Google Scholar 

  26. Abbassi, H.; Turki, S.; Ben Nasrallah, S.: Mixed convection in a plane channel with a built-in triangular prison. HTPA 39, 307–320 (2001)

    Google Scholar 

  27. Abbassi, H.; Turki, S.; Ben Nasrallah, S.: Numerical investigation of forced convection in a plane channel with a built-in triangular prison. IJTS 40, 649–658 (2001)

    Google Scholar 

  28. Pop,; et al.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)

    Google Scholar 

  29. Animasaun, I.L.; Ibraheem, R.O.; Mahanthesh, B.; Babatunde, H.A.: A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of somefluids. Chin. J. Phys. 60, 676–687 (2019)

    Google Scholar 

  30. Animasaun, I.L.: Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation. Ain Shams Eng. J. Eng. Phys. Math. 7(2), 755–765 (2015)

    Google Scholar 

  31. Animasaun, I.L.: Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-Darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction. J. Niger. Math. Soc. 34(1), 11–31 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Hajizadeh, A.; Shah, N.A.; Shah, S.I.A.; Animasaun, I.L.; Gorji, M.R.; Alarifi, I.M.: Free convection flow of nanofluids between two vertical plates with damped thermal flux. J. Mol. Liq. 289, 110964 (2019)

    Google Scholar 

  33. Motsa, S.S.; Animasaun, I.L.: Boundary layer flow over a vertical surface due to impulsive and buoyancy in the presence of thermal-diffusion and diffusion-thermo using bivariate spectral relaxation method. J. Appl. Fluid Mech. 9(7), 2605–2619 (2016)

    Google Scholar 

Download references

Acknowledgements

Authors are grateful to thank all reviewers and editors for their great suggestions and valuable comments which greatly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Bouabid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouabid, M., Ghoudi, N., Bouabda, R. et al. Irreversibility Analysis for Double Diffusive Convection Flow of a Gas Mixture in a Chamfered Corners Square Enclosure Filled with a Porous Medium. Arab J Sci Eng 45, 7499–7510 (2020). https://doi.org/10.1007/s13369-020-04613-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04613-4

Keywords

Navigation