Skip to main content
Log in

Crosswise Transport Mechanism of Micro-rotating Hybrid (Cu–Al2O3/H2O) Nanofluids Through Infusion of Various Shapes of Nanoparticles

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The shape factor of nanoparticles and micro-rotation effects on steady, oblique flow of hybrid micropolar nanoliquid in two dimensions with the presence of viscosity variation is aimed to be analyzed in this study. This analysis is performed subject to the weak concentration of micro-elements. Model equations of the problem are converted to a non-dimensional set of highly nonlinear ODEs with employing appropriate transformations. This coupled system is afterward solved with shooting algorithm. Influence of viscosity parameter, material constant and nanoparticles shape factor on flow velocity profiles and temperature distribution is analyzed, discussed and presented graphically. The flow monitoring parameters are found to have profound effects on resulting profiles of skin friction and surface heat transfer rate. Shear stress at the surface is increasing with variable viscosity parameter m, while decreasing with material constant K. Blade-shaped nanoparticles are found to be most effective heat transfer agent in the present scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\widehat{u}\) :

\(\widehat{x}\)-component of velocity (m s−1)

\(\widehat{v}\) :

\(\widehat{y}\)-component of velocity (m s−1)

\(\widehat{T}\) :

Temperature (K)

\({\widehat{T}}_{\infty }\) :

Ambient temperature (K)

\({\widehat{T}}_{{\rm w}}\) :

Wall temperature (K)

\({\widehat{k}}_{\rm hnf}\) :

Thermal conductivity of hybrid nanofluid (W m1 K1)

\({\widehat{k}}_{{\rm s}1}, {\widehat{k}}_{{\rm s}2}\) :

Thermal conductivity of Cu, Al2O3 nanoparticles (W m−1 K−1)

d :

Viscosity variation exponent

m :

Variable viscosity parameter

\(\widehat{p}\) :

Pressure (N m2)

n :

Concentration of microelements

K :

Micropolar coupling parameter

\(\widehat{x}, \widehat{y}\) :

Cartesian coordinates along and normal to stretching surface (m)

\({\widehat{k}}_{1},{\widehat{k}}_{2}\) :

Thermal conductivity of Cu, Al2O3 nanoparticles (W m−1 K−1)

Pr:

Prandtl number

j :

Micro-inertia density

ϕ1, ϕ2 :

Solid volume fraction of Cu, Al2O3 nanoparticles

μ 0 :

Reference viscosity (kg m1 s1)

\(\widehat{\nu }\) :

Kinematics viscosity (m2 s1)

\({\widehat{\rho }}_{{\rm s}1, }{ \widehat{\rho }}_{{\rm s}2}\) :

Density of Cu, Al2O3 nanoparticles (kg m−3)

\({\widehat{\alpha }}_{\rm hnf}\) :

Thermal diffusivity of hybrid nanofluid

\({\left(\widehat{\rho }{{c}}_{\widehat{{\rm p}}}\right)}_{{\rm s}1},{\left(\widehat{\rho }{{c}}_{\widehat{{\rm p}}}\right)}_{{\rm s}2}\) :

Thermal capacitance of Cu, Al2O3 nanoparticles (N m K−1)

p :

Nanoparticles shape factor

γ :

Obliqueness of the flow

\(\widehat{\mu }\) :

Dynamic viscosity (kg m1 s1)

\(\widehat{N}\) :

Micro-rotation vector

\(B=\frac{a}{c}\) :

Stretching ratio parameter

f:

Base fluid

s1, s2:

Cu, Al2O3 nanoparticles

hnf:

Hybrid nanofluid

References

  1. Sarkar, J., Ghosh, P., Adil, A.: A review on hybrid nanofluids: recent research, development and applications. Renew. Sustain. Energy Rev. 43, 164–177 (2015)

    Article  Google Scholar 

  2. Ghadikolaei, S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, Kh, Ganji, D.D.: Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 322, 427–438 (2017)

    Article  Google Scholar 

  3. Iqbal, Z., Maraj, E.N., Azhar, E., Mehmood, Z.: A novel development of hybrid (MoS2–SiO2/H2O) nanofluidic curvilinear transport and consequences for effectiveness of shape factors. J. Taiwan Inst. Chem. Eng. 81, 150–158 (2017)

    Article  Google Scholar 

  4. Nadeem, S., Abbas, N., Khan, A.U.: Characteristics of three dimensional stagnation point flow of hybrid nanofluid past a circular cylinder. Results Phys. 8, 829–835 (2018)

    Article  Google Scholar 

  5. Eringen, C.: Theory of micropolar fluids. J. Math. Fluid Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  6. Peddieson, J.: An application of the micropolar fluid model to the calculation of a turbulent shear flow. Int. J. Eng. Sci. 10(1), 23–32 (1972)

    Article  Google Scholar 

  7. Guram, G.S., Smith, A.C.: Stagnation flows of micropolar fluids with strong and weak interactions. Comput. Math. Appl. 6(2), 213–233 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khonsari, M.M., Brewe, D.E.: On the performance of finite journal bearings lubricated with micropolar fluids. Tribol. Trans. 32(2), 155–160 (1989)

    Article  Google Scholar 

  9. Rees, D.A.S., Pop, I.: Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate. IMA J. Appl. Math. 61(2), 179–197 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ishak, A., Nazar, R., Pop, I.: Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface. Comput. Math. Appl. 56(12), 3188–3194 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ishak, A., Lok, Y.Y., Pop, I.: Stagnation-point flow over a shrinking sheet in a micropolar fluid. Chem. Eng. Commun. 197(11), 1417–1427 (2010)

    Article  Google Scholar 

  12. Haq, R.U., Nadeem, S., Akbar, N.S., Khan, Z.H.: Buoyancy and radiation effect on stagnation point flow of micropolar nanofluid along a vertically convective stretching surface. IEEE Trans. Nanotechnol. 14(1), 42–50 (2014)

    Article  Google Scholar 

  13. Tabassum, R., Mehmood, R., Akbar, N.S.: Magnetite micropolar nanofluid non-aligned MHD flow with mixed convection. Eur. Phys. J. Plus 133, 1–18 (2017)

    Google Scholar 

  14. Mehta, K.N., Sood, S.: Transient free convection flow with temperature dependent viscosity in a fluid saturated porous medium. Int. J. Eng. Sci. 30(8), 1083–1087 (1992)

    Article  MATH  Google Scholar 

  15. Hossain, A.A., Khanafer, K., Vafai, K.: The effect of radiation on free convection flow of fluid with variable viscosity from a porous vertical plate. Int. J. Therm. Sci. 40, 115–124 (2001)

    Article  Google Scholar 

  16. Abel, M.S., Khan, S.K., Prasad, K.V.: Study of visco-elastic fluid flow and heat transfer over a stretching sheet with variable viscosity. Int. J. Non-Linear Mech. 37, 81–88 (2002)

    Article  MATH  Google Scholar 

  17. Ellahi, R., Arshad, A.: Analytical solutions for MHD flow in a third grade fluid with variable viscosity. Math. Comput. Model. 52(9–10), 1783–1793 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Modather, M., Abdou, M., EL-Zahar, E.R.: Variable viscosity effect on heat transfer over a continuous moving surface with variable internal heat generation in micropolar fluids. Appl. Math. Sci. 6, 6365–6379 (2012)

    MATH  Google Scholar 

  19. Ellahi, R.: The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl. Math. Model. 37, 1451–1467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Umavathi, J.C.: Combined effects of variable viscosity and variable thermal conductivity on double diffusive convection flow of a permeable fluid in a vertical channel. Transp. Porous Media 108(3), 659–678 (2015)

    Article  MathSciNet  Google Scholar 

  21. Manjunatha, S., Gireesha, B.J.: Effects of variable viscosity and thermal conductivity on MHD flow and heat transfer of a dusty fluid. Ain Shams Eng. J. 7(1), 505–515 (2016)

    Article  Google Scholar 

  22. Gorla, R.S.R., Siddiqa, S., Mansour, M.A., Rashad, A.M., Salah, T.: Heat source/sink effects on natural convection of a hybrid nanofluid-filled porous cavity. J. Thermophys. Heat Transf. 31(4), 847–857 (2017)

    Article  Google Scholar 

  23. Rashad, A.M., Chamkha, A.J., Ismael, M.A., Salah, T.: Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu–Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. J. Heat Transf. 140(7), 072502–072502-13 (2018)

    Article  Google Scholar 

  24. Tabassum, R., Mehmood, R., Nadeem, S.: Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid. J. Colloid Interface Sci. 501, 304–310 (2017)

    Article  Google Scholar 

  25. Tabassum, R., Mehmood, R., Pourmehran, O., Akbar, N.S., Bandpy, M.G.: Impact of viscosity variation on oblique flow of Cu–H2O nanofluid. J. Process Mech. Eng. 232(5), 622–631 (2017)

    Article  Google Scholar 

  26. Mehmood, R., Tabassum, R., Pourmehran, O., Ganji, D.D.: Crosswise stream of hydrogen-oxide (H2O) through a porous media containing copper nanoparticles. Int. J. Hydrogen Energy 43(15), 7562–7569 (2018)

    Article  Google Scholar 

  27. Mehmood, R., Tabassum, R.: Transverse transport of Fe3O4–H2O with viscosity variation under pure internal heating. Indian J. Phys. 92(10), 1271–1280 (2018)

    Article  Google Scholar 

  28. Mehmood, R., Tabassum, R., Akbar, N.S.: Oblique stagnation point flow of non-Newtonian fluid with variable viscosity. Heat Transf. Res. 49, 1587–1603 (2018)

    Article  Google Scholar 

  29. Tabassum, R., Mehmood, R., Pourmehran, O.: Velocity slip in mixed-convective oblique transport of titanium oxide/water (nano polymer) with temperature dependent viscosity. Eur. Phys. J. Plus 133, 361 (2018)

    Article  Google Scholar 

  30. Tabassum, R., Mehmood, R., Meraj, E.N.: Impact of internal heat source on mixed convective transverse transport of viscoplastic material under viscosity variation. Commun. Theor. Phys. 70(4), 423–429 (2018)

    Article  MathSciNet  Google Scholar 

  31. Mehmood, R., Tabassum, R.: Crosswise stream of methanol-iron oxide (CH3OH–Fe3O4) submerged in porous medium influenced by viscosity variation. J. Process Mech. Eng. 233, 1013–1023 (2019)

    Article  Google Scholar 

  32. Rashad, A.M., Khan, W., El-kabier, S.M.M., El-Hakeim, A.M.A.: Mixed convective flow of micropolar nanofluid across a horizontal cylinder In saturated porous medium. Appl. Sci. 9, 5241 (2019)

    Article  Google Scholar 

  33. El-kabier, S.M.M., El-Zahar, E.R., Modather, M., Gorla, R.S.R., Rashad, A.M.: Unsteady slip flow of a micropolar nanofluid over an impulsively stretched vertical surface. Indian J. Pure Appl. Phys. 57, 773–782 (2019)

    Google Scholar 

  34. Chamkha, A.J., Rashad, A.M., Elzahar, E.R., Elmky, H.A.: Analytical and numerical investigation of Fe3O4–water nanofluid flow over a moveable plane in a parallel stream with high suction. Energies 12, 198 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mehmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabassum, R., Mehmood, R. Crosswise Transport Mechanism of Micro-rotating Hybrid (Cu–Al2O3/H2O) Nanofluids Through Infusion of Various Shapes of Nanoparticles. Arab J Sci Eng 45, 5883–5893 (2020). https://doi.org/10.1007/s13369-020-04580-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04580-w

Keywords

Navigation