Skip to main content
Log in

Cloning, Characterization, and Structural Modeling of an Extremophilic Bacterial Lipase Isolated from Saline Habitats of the Thar Desert

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lipases have a characteristic folding pattern of α/β-hydrolase with mostly parallel β-sheets, flanked on both sides by α-helixes in the structure. The active site is formed by a catalytic triad (serine, aspartic/glutamic acid, and histidine), which is highly conserved. In this study, we have used an integrated experimental and computational approach to identify the extremophilic microbial lipases from the saline habitats of the Thar Desert of Rajasthan. Lipase-producing bacteria were screened and a few samples showed significant lipase activity in both quantitative and qualitative experiments. 16S rRNA sequence analysis of the isolate F1 showed that its sequence is quite similar to that of Bacillus licheniformis and Bacillus haynesii, indicating that this isolate belongs to a new subspecies of Bacillus. The isolate F7 showed maximum sequence identity with Bacillus tequilensis strain 10b. The isolate F7 sequence analysis provided a clear testimony that it can be a new strain of Bacillus tequilensis. The F7 lipase exhibited optimal activity at 60 °C and pH 9. Structural modeling of the F7 lipase revealed that it has a highly conserved alpha/beta hydrolase fold at the sequence and structural level except for the N-terminal region. Interestingly, residue Glu128 was different from the template structure and showed the hydrogen bonding between the side chain of Glu128 and side chains of Asn35 and Gln152 amino acids. Besides, this amino acid also showed salt bridge interaction between Glu128--Lys101. These interactions may be assisting in preserving the stability and activity of lipase at high temperatures and in alkaline pH conditions. The information gathered from this investigation will guide in the rational designing of new more potential extremophilic lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ghosh, P. K., Saxena, R. K., Gupta, R., Yadav, R. P., & Davidson, S. (1996). Microbial lipases: Production and applications. Science Progress, 79, 119–157.

    PubMed  CAS  Google Scholar 

  2. Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: A review. Bioresource Technology, 89(1), 17–34.

    Article  CAS  Google Scholar 

  3. Saxena RK, Agarwal L, Meghwanshi GK (2005) Diversity of fungal and yeast lipases: Present and future scenario for the 21st century. In: Microbial diversity: Current perspectives and potential applications, 791-814.

  4. Meghwanshi GK and Vashishtha A (2018) Biotechnology of fungal lipases. In Fungi and their role in sustainable development: Current perspectives. Springer Nature Singapore, 383–411.

  5. Shu, Z. Y., Jiang, H., Lin, R. F., Jiang, Y. M., Lin, L., & Huang, J. Z. (2010). Technical methods to improve yield, activity and stability in the development of microbial lipases. Journal of Molecular Catalysis B: Enzymatic, 62(1), 1–8.

    Article  CAS  Google Scholar 

  6. Treichel, H., de Oliveira, D., Mazutti, M. A., Di Luccio, M., & Oliveira, J. V. (2009). A review on microbial lipases production. Food Bioprocess Tech, 3, 182–196.

    Article  CAS  Google Scholar 

  7. Verma, S., Kumar, R., & Meghwanshi, G. K. (2019). Identification of new members of alkaliphilic lipases in archaea and metagenome database using reconstruction of ancestral sequences. 3Biotech, 9(5), 165.

    Google Scholar 

  8. Demirjian, D., Morís-Varas, F., & Cassidy, C. (2001). Enzymes from extremophiles. Current Opinion in Chemical Biology, 5(2), 144–151.

    Article  CAS  Google Scholar 

  9. Khyami-Horani, H. (1996). Thermotolerant strain of Bacillus licheniformis producing lipase. World Journal of Microbiology and Biotechnology, 12(4), 399–401.

    Article  CAS  Google Scholar 

  10. Kaur, R., Kumar, R., Verma, S., Kumar, A., Rajesh, C., & Sharma, P. K. (2020). Structural and functional insights about unique extremophilic bacterial lipolytic enzyme from metagenome source. International Journal of Biological Macromolecules, 152, 593–604. https://doi.org/10.1016/j.ijbiomac.2020.02.210.

    Article  PubMed  CAS  Google Scholar 

  11. Sharma, P. K., Kumar, R., Garg, P., & Kaur, J. (2015). Insights into controlling role of substitution mutation, E315G on thermostability of a lipase cloned from metagenome of hot spring soil. 3Biotech, 4, 189–196.

    Google Scholar 

  12. Sharma, P. K., Kumar, R., Kumar, R., Mohammad, O., Singh, R., & Kaur, J. (2011). Engineering of a metagenome derived lipase towards thermal tolerance: Effect of aspargine to lysine mutation on the protein surface. Gene, 491, 264–271.

    Article  CAS  Google Scholar 

  13. Daoud, L., Kamoun, J., Ali, M. B., Jallouli, R., Bradai, R., Mechichi, T., Gargouri, Y., Ali, Y. B., & Aloulou, A. (2013). Purification and biochemical characterization of a halotolerant Staphylococcus sp. extracellular lipase. In J Biol Macromol, 57, 232–237.

    Article  CAS  Google Scholar 

  14. Schneegurt, M. A. (2012). Media and conditions for the growth of halophilic and halotolerant bacteria and archaea. In R. H. Vreeland (Ed.), Advances in understanding the biology of halophilic microorganisms. Dordrecht: Springer.

    Google Scholar 

  15. Ventosa, A., Nieto, J. J., & Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62(2), 504–544.

    Article  CAS  Google Scholar 

  16. Winkler, U. K., & Stuckmann, M. (1979). Glycogen, hyaluronate and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 138(3), 663–670.

    Article  CAS  Google Scholar 

  17. Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44, 344–350.

    Article  CAS  Google Scholar 

  18. Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 5.6.1–5.6.37.

    Article  Google Scholar 

  19. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., & Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 7(1), 10480.

    Article  CAS  Google Scholar 

  20. Kuriata, A., Gierut, A. M., Oleniecki, T., Ciemny, M. P., Kolinski, A., Kurcinski, M., & Kmiecik, S. (2018). CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Research, 46, 338–343.

    Article  CAS  Google Scholar 

  21. Meghwanshi, G., Agarwal, L., Dutt, K., & Saxena, R. (2006). Characterization of 1-3 regiospecific lipases from new Pseudomonas and Bacillus isolates. J Mol Catal B Enzyme, 40(3-4), 127–131.

    Article  CAS  Google Scholar 

  22. Takaç, S., & Marul, B. (2008). Effects of lipidic carbon sources on the extracellular lipolytic activity of a newly isolated strain of Bacillus subtilis. Journal of Industrial Microbiology & Biotechnology, 35(9), 1019–1025.

    Article  CAS  Google Scholar 

  23. Kanchana, R., Muraleedharan Dr, U., & Raghukumar, S. (2011). Alkaline lipase activity from the marine protists, thraustochytrids. World Journal of Microbiology and Biotechnology, 27(9), 2125–2131.

    Article  CAS  Google Scholar 

  24. Rnzra, R., Baharum, S. N., Basri, M., & Salleh, A. B. (2005). High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Analytical Biochemistry, 341, 267–274.

    Article  CAS  Google Scholar 

  25. Zhou, J., Chen, W. W., Jia, Z. B., Huang, G. R., Hong, Y., Tao, J. J., & Luo, X. B. (2012). Purification and characterization of lipase produced by Aspergillus oryzae CJLU-31 isolated from waste cooking oily soil. American Journal of Food Technology, 7(10), 596–608.

    Article  CAS  Google Scholar 

  26. Madan, B., & Mishra, P. (2014). Directed evolution of Bacillus licheniformis lipase for improvement of thermostability. Biochemical Engineering Journal, 91, 276–282.

    Article  CAS  Google Scholar 

  27. Dunlap, C., Schisler, D., Perry, E., Connor, N., Cohan, F., & Rooney, A. (2017). Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil. International Journal of Systematic and Evolutionary Microbiology, 67(8), 2720–2725.

    Article  CAS  Google Scholar 

  28. Chakravorty D, Patra S (2012) Attaining extremophiles and extremolytes: Methodologies and limitations. Extremophiles: Sustainable resources and biotechnological implications, 29–74.

  29. Kaur, G., Singh, A., Sharma, R., Sharma, V., Verma, S., & Sharma, P. K. (2016). Cloning, expression, purification and characterization of lipase from Bacillus licheniformis, isolated from hot spring of Himachal Pradesh, India. 3 Biotech, 6(1), 49.

    Article  Google Scholar 

  30. Lesuisse, E., Schanck, K., & Colson, C. (1993). Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. European Journal of Biochemistry, 216(1), 155–160.

    Article  CAS  Google Scholar 

  31. Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64(6), 763–781.

    Article  CAS  Google Scholar 

  32. Cadirci, B. H., & Yasa, I. (2010). An organic solvent tolerant and thermotolerant lipase from Pseudomonas fluorescens P21. Journal of Molecular Catalysis B: Enzymatic, 64(3-4), 155–161.

    Article  CAS  Google Scholar 

  33. Aysun, A. G., & Alper, A. (2013). Purification and biochemical characterization of an extracellular lipase from psychrotolerant Pseudomonas fluorescens KE38. Turkish Journal of Biology, 37, 538–546.

    Article  CAS  Google Scholar 

  34. Sekhon, A., Dahiya, N., Tiwari, R. P., & Hoondal, G. S. (2005). Properties of a thermostable extracellular lipase from Bacillus megaterium AKG-1. Journal of Basic Microbiology, 45(2), 147–154.

    Article  CAS  Google Scholar 

  35. Brabcova, J., Zarevucka, M., & Mackova, M. (2010). Difference in hydrolytic activities of two crude lipases from Geotrichum candidum 4013. Yeast, 27(12), 1029–1038.

    Article  CAS  Google Scholar 

  36. Verma, S., Meghwanshi, G. K., & Kumar, R. (2018). Structural homogeneity in microbial lipases. Microbiol Curr Res, 2, 12–13.

    Google Scholar 

  37. Pouderoyen, G. V., Eggert, T., Jaeger, K. E., & Dijkstra, B. (2001). The crystal structure of Bacillus subtilis lipase: A minimal alpha/beta hydrolase fold enzyme. J Mol Bio, 309(1), 215–226.

    Article  CAS  Google Scholar 

  38. Khan, F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., & Wang, Y. (2017). The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontiers in Bioengineering and Biotechnology, 5, 16.

    Article  Google Scholar 

  39. Haque, N., & Prabhu, N. P. (2016). Lid dynamics of porcine pancreatic lipase in non-aqueous solvents. Biochimica et Biophysica Acta, 1860(10), 2326–2334.

    Article  CAS  Google Scholar 

  40. Timucin, E., & Sezerman, O. U. (2013). The conserved lid tryptophan, W211, potentiates thermostability and thermoactivity in bacterial thermoalkalophilic lipases. PLoS One, 8(12), 85186.

    Article  CAS  Google Scholar 

  41. Rehm, S., Trodler, P., & Pleiss, J. (2010). Solvent-induced lid opening in lipases: A molecular dynamics study. Protein Science, 19(11), 2122–2130.

    Article  CAS  Google Scholar 

Download references

Funding

The author Gautam Kumar Meghwanshi sincerely acknowledge the financial support provided by SERB, New Delhi (Sanction order NO. SB/YS/LS-146/2014, dated 25 May 2015), for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Kumar Meghwanshi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Kumar, R., Kumar, P. et al. Cloning, Characterization, and Structural Modeling of an Extremophilic Bacterial Lipase Isolated from Saline Habitats of the Thar Desert. Appl Biochem Biotechnol 192, 557–572 (2020). https://doi.org/10.1007/s12010-020-03329-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03329-3

Keywords

Navigation