Skip to main content
Log in

IETF-based Finite Automaton for Service Composition in Service Function Chaining

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The Service Function Chaining (SFC) is an architecture to orchestrate network services by creating and deploying the rule-based service function chains and steering network traffic through them. One of the main tasks in SFC is the optimal composition of the service functions and checking the validation of the composed service chain based on the predefined rules. As the problem of optimal chain composition is NP hard, in this paper a Finite Automaton (FA) model is proposed to limit the solution space by considering the practical scenarios. Since the chaining rules depend on the substrate physical platform, the proposed FA is based on the data centre, mobile, and security scenarios introduced by Internet Engineering Task Force (IETF). Subsequently, Finite Automaton Matcher (FAM) shows that the proposed FA is an acceptable tool for validating the correctness of the composed service chain. Experimental results and complexity analysis show that this method reduces the number of service chain compositions and therefore the time complexity significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Medhat, A. M., Taleb, T., Elmangoush, A., Carella, G. A., Covaci, S., & Magedanz, T. (2017). Service function chaining in next generation networks: State of the art and research challenges. IEEE Communications Magazine, 55(2), 216–223.

    Article  Google Scholar 

  2. Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F., & Boutaba, R. (2016). Network function virtualization: State-of-the-art and research challenges. IEEE Communications & Surveys Tutorials, 18(1), 236–262.

    Article  Google Scholar 

  3. Mirjalily, G., & Luo, Z.Q. (2018). Optimal network function virtualization and service function chaining: A survey. Chinese Journal of Electronics, 27(4), 704–717.

    Article  Google Scholar 

  4. Rangisetti, A. K., & Tamma, B. R. (2017). Software defined wireless networks: A survey of issues and solutions. Wireless Personal Communications, 97(4), 6019–6053.

    Article  Google Scholar 

  5. Nguyen, V.-G., Do, T.-X., & Kim, Y. (2016). SDN and virtualization-based LTE mobile network architectures: A comprehensive survey. Wireless Personal Communications, 86(3), 1401–1438.

    Article  Google Scholar 

  6. Halpern, J., & Pignataro, C. (2015). RFC 7665: Service Function Chaining (SFC) Architecture. IETF Datatracker.

  7. Bhamare, D., Jain, R., Samaka, M., & Erbad, A. (2016). A survey on service function chaining. Journal of Network and Computer Applications, 75, 138–155.

    Article  Google Scholar 

  8. Yi, B., Wang, X., Li, K., & Huang, M. (2018). A comprehensive survey of network function virtualization. Computer Networks, 133, 212–262.

    Article  Google Scholar 

  9. Herrera, J. G., & Botero, J. F. (2016). Resource allocation in NFV: A comprehensive survey. IEEE Transactions on Network and Service Management, 13(3), 518–532.

    Article  Google Scholar 

  10. AbdelSalam, A., Clad, F., Filsfils, C., Salsano, S., Siracusano, G., & Veltri, L. (2017). Implementation of virtual network function chaining through segment routing in a linux-based nfv infrastructure. In IEEE Conference on Network Softwarization (NetSoft) (pp. 1–5).

  11. Jeon, H., & Lee, B. (2015). Network service chaining challenges for VNF outsourcing in network function virtualization. In IEEE International Conference on Information and Communication Technology Convergence (ICTC)  (pp. 819–821).

  12. Mehraghdam, S., Keller, M., & Karl, H. (2014). Specifying and placing chains of virtual network functions. In Cloud Networking (CloudNet), IEEE 3rd International Conference on Cloud Networking (CloudNet) (pp. 7–13).

  13. Rotsos, C., King, D., Farshad, A., Bird, J., Fawcett, L., Georgalas, N., et al. (2017). Network service orchestration standardization: A technology survey. Computer Standards Interfaces, 54, 203–215.

    Article  Google Scholar 

  14. Mehraghdam, S., & Karl, H. (2015). Specification of complex structures in distributed service function chaining using a YANG data model. arXiv preprint arXiv:1503.02442.

  15. Hieu, T. T., & Thinh, T. N. (2014). mDFA: A memory efficient DFA-based pattern matching engine on FPGA. Wireless Personal Communications, 78(4), 1833–1847.

    Article  Google Scholar 

  16. Hazra, T., Kumar, C., & Nene, M. J. (2017). Modeling and analysis of grid-based target searching problems in a mobile sensor network. Wireless Personal Communications, 95(4), 4717–4732.

    Article  Google Scholar 

  17. Linz, P. (2006). An Introduction to Formal Languages and Automata, Fifth Edition. Jones and Bartlett Publishers, Inc.

  18. Lee, W., Choi, Y.-H., & Kim, N. (2013). Study on virtual service chain for secure software-defined networking. Advanced Science and Technology Letters, 29(13), 177–180.

    Google Scholar 

  19. John, W., Pentikousis, K., Agapiou, G., Jacob, E., Kind, M., & Manzalini, A., et al. (2013). Research directions in network service chaining. In IEEE SDN for Future Networks and Services (SDN4FNS) (pp. 1–7).

  20. Blendin, J., Ruckert, J., Leymann, N., Schyguda, G., & Hausheer, D. (2014). Position paper: Software-defined network service chaining. In IEEE Third European Workshop on Software Defined Networks (EWSDN) (pp. 109–114).

  21. Quinn, P., & Guichard, J. (2014). Service function chaining: Creating a service plane via network service headers. Computer, 47(11), 38–44.

    Article  Google Scholar 

  22. Quinn, P., & Nadeau, T. (2015). Problem statement for service function chaining. In RFC 7498. RFC Editor.

  23. Li, X., & Qian, C. (2016). A survey of network function placement. In 13th IEEE Annual Consumer Communications & Networking Conference (CCNC) (pp. 948–953).

  24. Medhat, A. M., Carella, G., Luck, C., Corici, M.-I., & Magedanz, T. (2015). Near optimal service function path instantiation in a multi-datacenter environment. In 2015 11th international conference on network and service management (CNSM) (pp. 336–341).

  25. Luizelli, M. C., Bays, L. R., Buriol, L. S., Barcellos, M. P., & Gaspary, L. P. (2015). Piecing together the NFV provisioning puzzle: Efficient placement and chaining of virtual network functions. In 2015 IFIP/IEEE international symposium on integrated network management (IM) (pp. 98–106). IEEE.

  26. Na, T., & Kim, J. (2015). Cloud-based service function chaining with distributed VMs and its underlay-aware improvement. In 2015 international conference on information networking (ICOIN) (pp. 428–429).

  27. Sahhaf, S., Tavernier, W., Rost, M., Schmid, S., Colle, D., Pickavet, M., et al. (2015). Network service chaining with optimized network function embedding supporting service decompositions. Computer Networks, 93, 492–505.

    Article  Google Scholar 

  28. Mehraghdam, S., & Karl, H. (2016). Placement of services with flexible structures specified by a YANG data model. In 2016 IEEE NetSoft Conference and Workshops (NetSoft) (pp. 184–192).

  29. Kumar, S., Tufail, M., Majee, S., Captari, C., & Homma, S. (2017). Service function chaining use cases in data centers. Working Draft, IETF Secretariat, Internet-Draft draft-ietf-sfc-dc-use-cases-06.

  30. Haeffner, W., Napper, J., Stiemerling, M., Lopez, D., & Uttaro, J. (2015). Service function chaining use cases in mobile networks. Internet Engineering Task Force.

  31. Wang, E., Leung, K., Felix, J., & Iyer, J. (2017). Service function chaining use cases for network security. IETF draft, draft-wang-sfc-ns-use-cases-02.

  32. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. MIT press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sima Emadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravian, P., Emadi, S., Mirjalily, G. et al. IETF-based Finite Automaton for Service Composition in Service Function Chaining. Wireless Pers Commun 114, 1235–1247 (2020). https://doi.org/10.1007/s11277-020-07417-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07417-9

Keywords

Navigation