Skip to main content

Advertisement

Log in

Stem-Cell Therapy as a Potential Strategy for Radiation-Induced Brain Injury

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Radiation therapy is a standard and effective non-surgical treatment for primary brain tumors and metastases. However, this strategy inevitably results in damage of normal brain tissue, causing severe complications, especially the late-delayed cognitive impairment. Due to the multifactorial and complex pathological effects of radiation, there is a lack of effective preventative and restorative treatments for the irradiated brain. Stem-cell therapy has held considerable promise for decades in the treatment of central nervous system (CNS) disorders because of its unique capacity for tissue repair and functional integrity. Currently, there is growing interest in using stem cells as a novel option to attenuate the adverse effects of irradiation. In the present review, we discuss recent studies evaluating stem-cell therapies for the irradiated brain and their therapeutic effects on ameliorating radiation-related brain injury as well as their potential challenges in clinical applications. We discuss these works in context of the pathogenesis of radiation-induced injury to CNS tissue in an attempt to elucidate the potential mechanisms of engrafted stem cells to reverse radiation-induced degenerative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Makale MT, McDonald CR, Hattangadi-Gluth JA, Kesari S (2017) Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nature Reviews. Neurology 13(1):52–64

    CAS  PubMed  Google Scholar 

  2. Johannesen, T. B., Lien, H. H., Hole, K. H., & Lote, K. (2003). Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiotherapy and Oncology, 69(2), 169–176.

    PubMed  Google Scholar 

  3. Brown, P. D., Pugh, S., Laack, N. N., Wefel, J. S., Khuntia, D., Meyers, C., Choucair, A., Fox, S., Suh, J. H., Roberge, D., Kavadi, V., Bentzen, S. M., Mehta, M. P., Watkins-Bruner, D., & Radiation Therapy Oncology, G. (2013). Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology, 15(10), 1429–1437.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mabbott, D. J., Spiegler, B. J., Greenberg, M. L., Rutka, J. T., Hyder, D. J., & Bouffet, E. (2005). Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. Journal of Clinical Oncology, 23(10), 2256–2263.

    PubMed  Google Scholar 

  5. Merchant, T. E., Conklin, H. M., Wu, S., Lustig, R. H., & Xiong, X. (2009). Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: prospective evaluation of cognitive, endocrine, and hearing deficits. Journal of Clinical Oncology, 27(22), 3691–3697.

    PubMed  PubMed Central  Google Scholar 

  6. Merchant, T. E., Schreiber, J. E., Wu, S., Lukose, R., Xiong, X., & Gajjar, A. (2014). Critical combinations of radiation dose and volume predict intelligence quotient and academic achievement scores after craniospinal irradiation in children with medulloblastoma. International Journal of Radiation Oncology, Biology, Physics, 90(3), 554–561.

  7. Tofilon, P. J., & Fike, J. R. (2000). The radioresponse of the central nervous system: a dynamic process. Radiation Research, 153(4), 357–370.

    CAS  PubMed  Google Scholar 

  8. Hochberg, F. H., & Slotnick, B. (1980). Neuropsychologic impairment in astrocytoma survivors. Neurology, 30(2), 172–177.

  9. Twijnstra, A., Boon, P. J., Lormans, A. C., & ten Velde, G. P. (1987). Neurotoxicity of prophylactic cranial irradiation in patients with small cell carcinoma of the lung. European Journal of Cancer and Clinical Oncology, 23(7), 983–986.

    CAS  PubMed  Google Scholar 

  10. Greene-Schloesser, D., Robbins, M. E., Peiffer, A. M., Shaw, E. G., Wheeler, K. T., & Chan, M. D. (2012). Radiation-induced brain injury: A review. Frontiers in Oncology, 2, 73.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, Y. W., Cho, H. J., Lee, W. H., & Sonntag, W. E. (2012). Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets. Biomolecules & Therapeutics (Seoul), 20(4), 357–370.

    CAS  Google Scholar 

  12. McRobb, L. S., McKay, M. J., Gamble, J. R., Grace, M., Moutrie, V., Santos, E. D., Lee, V. S., Zhao, Z., Molloy, M. P., & Stoodley, M. A. (2017). Ionizing radiation reduces ADAM10 expression in brain microvascular endothelial cells undergoing stress-induced senescence. Aging (Albany NY), 9(4), 1248–1268.

    CAS  Google Scholar 

  13. Heo, J. I., Kim, K. I., Woo, S. K., Kim, J. S., Choi, K. J., Lee, H. J., & Kim, K. S. (2019). Stromal cell-derived factor 1 protects brain vascular endothelial cells from radiation-induced brain damage. Cells, 8, (10).

  14. Ljubimova, N. V., Levitman, M. K., Plotnikova, E. D., & Eidus, L. (1991). Endothelial cell population dynamics in rat brain after local irradiation. British Journal of Radiology, 64(766), 934–940.

    CAS  PubMed  Google Scholar 

  15. Pena, L. A., Fuks, Z., & Kolesnick, R. N. (2000). Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Research, 60(2), 321–327.

    CAS  PubMed  Google Scholar 

  16. Yuan, H., Gaber, M. W., McColgan, T., Naimark, M. D., Kiani, M. F., & Merchant, T. E. (2003). Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: modulation with anti-ICAM-1 antibodies. Brain Research, 969(1–2), 59–69.

    CAS  PubMed  Google Scholar 

  17. Yuan, H., Gaber, M. W., Boyd, K., Wilson, C. M., Kiani, M. F., & Merchant, T. E. (2006). Effects of fractionated radiation on the brain vasculature in a murine model: blood-brain barrier permeability, astrocyte proliferation, and ultrastructural changes. International Journal of Radiation Oncology, Biology, and Physics, 66(3), 860–866.

    Google Scholar 

  18. Brown, W. R., Thore, C. R., Moody, D. M., Robbins, M. E., & Wheeler, K. T. (2005). Vascular damage after fractionated whole-brain irradiation in rats. Radiation Research, 164(5), 662–668.

    CAS  PubMed  Google Scholar 

  19. Calvo, W., Hopewell, J. W., Reinhold, H. S., & Yeung, T. K. (1988). Time- and dose-related changes in the white matter of the rat brain after single doses of X rays. British Journal of Radiology, 61(731), 1043–1052.

    CAS  PubMed  Google Scholar 

  20. Gjedde, A., & Diemer, N. H. (1985). Double-tracer study of the fine regional blood-brain glucose transfer in the rat by computer-assisted autoradiography. Journal of Cerebral Blood Flow and Metabolism, 5(2), 282–289.

    CAS  PubMed  Google Scholar 

  21. Zhao, R., & Pollack, G. M. (2009). Regional differences in capillary density, perfusion rate, and P-glycoprotein activity: a quantitative analysis of regional drug exposure in the brain. Biochemical Pharmacology, 78(8), 1052–1059.

  22. Warrington, J. P., Csiszar, A., Mitschelen, M., Lee, Y. W., & Sonntag, W. E. (2012). Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS One, 7(1), e30444.

  23. Warrington, J. P., Ashpole, N., Csiszar, A., Lee, Y. W., Ungvari, Z., & Sonntag, W. E. (2013). Whole brain radiation-induced vascular cognitive impairment: mechanisms and implications. Journal of Vascular Research, 50(6), 445–457.

    PubMed  PubMed Central  Google Scholar 

  24. Mao, X. W., Favre, C. J., Fike, J. R., Kubinova, L., Anderson, E., Campbell-Beachler, M., Jones, T., Smith, A., Rightnar, S., & Nelson, G. A. (2010). High-LET radiation-induced response of microvessels in the Hippocampus. Radiation Research, 173(4), 486–493.

    CAS  PubMed  Google Scholar 

  25. Warrington, J. P., Csiszar, A., Johnson, D. A., Herman, T. S., Ahmad, S., Lee, Y. W., & Sonntag, W. E. (2011). Cerebral microvascular rarefaction induced by whole brain radiation is reversible by systemic hypoxia in mice. American Journal of Physiology - Heart and Circulatory Physiology, 300 (3), H736-H744.

  26. Craver, B. M., Acharya, M. M., Allen, B. D., Benke, S. N., Hultgren, N. W., Baulch, J. E., & Limoli, C. (2016). L., 3D surface analysis of hippocampal microvasculature in the irradiated brain. Environmental and Molecular Mutagenesis, 57(5), 341–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schultheiss, T. E., & Stephens, L. C. (1992). Invited review: permanent radiation myelopathy. British Journal of Radiology, 65(777), 737–753.

    CAS  PubMed  Google Scholar 

  28. Zhao, W., Payne, V., Tommasi, E., Diz, D. I., Hsu, F. C., & Robbins, M. E. (2007). Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. International Journal of Radiation Oncology, Biology, and Physics, 67(1), 6–9.

    CAS  Google Scholar 

  29. Lee, T. C., Greene-Schloesser, D., Payne, V., Diz, D. I., Hsu, F. C., Kooshki, M., Mustafa, R., Riddle, D. R., Zhao, W., Chan, M. D., & Robbins, M. E. (2012). Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Radiation Research, 178(1), 46–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, W. H., Sonntag, W. E., Mitschelen, M., Yan, H., & Lee, Y. W. (2010). Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. International Journal of Radiation Biology, 86(2), 132–144.

    PubMed  PubMed Central  Google Scholar 

  31. Kyrkanides, S., Olschowka, J. A., Williams, J. P., Hansen, J. T., & O’Banion, M. K. (1999). TNF alpha and IL-1beta mediate intercellular adhesion molecule-1 induction via microglia-astrocyte interaction in CNS radiation injury. Journal of Neuroimmunology, 95(1–2), 95–106.

    CAS  PubMed  Google Scholar 

  32. Kalm, M., Fukuda, A., Fukuda, H., Ohrfelt, A., Lannering, B., Bjork-Eriksson, T., Blennow, K., Marky, I., & Blomgren, K. (2009). Transient inflammation in neurogenic regions after irradiation of the developing brain. Radiation Research, 171(1), 66–76.

    CAS  PubMed  Google Scholar 

  33. Monje, M. L., Vogel, H., Masek, M., Ligon, K. L., Fisher, P. G., & Palmer, T. D. (2007). Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Annals of Neurology, 62(5), 515–520.

    PubMed  Google Scholar 

  34. Raber, J., Rola, R., LeFevour, A., Morhardt, D., Curley, J., Mizumatsu, S., VandenBerg, S. R., & Fike, J. R. (2004). Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiation Research, 162(1), 39–47.

    CAS  PubMed  Google Scholar 

  35. Monje, M. L., Mizumatsu, S., Fike, J. R., & Palmer, T. D. (2002). Irradiation induces neural precursor-cell dysfunction. Nature Medicine, 8(9), 955–962.

    CAS  PubMed  Google Scholar 

  36. Hwang, S. Y., Jung, J. S., Kim, T. H., Lim, S. J., Oh, E. S., Kim, J. Y., Ji, K. A., Joe, E. H., Cho, K. H., & Han, I. O. (2006). Ionizing radiation induces astrocyte gliosis through microglia activation. Neurobiology of Disease, 21(3), 457–467.

    CAS  PubMed  Google Scholar 

  37. Chiang, C. S., McBride, W. H., & Withers, H. R. (1993). Radiation-induced astrocytic and microglial responses in mouse brain. Radiotherapy and Oncology, 29 (1), 60–68.

  38. Wilson, C. M., Gaber, M. W., Sabek, O. M., Zawaski, J. A., & Merchant, T. E. (2009). Radiation-induced astrogliosis and blood-brain barrier damage can be abrogated using anti-TNF treatment. International Journal of Radiation Oncology, Biology, and Physics,74 (3), 934–941.

  39. Akiyama, K., Tanaka, R., Sato, M., & Takeda, N. (2001). Cognitive dysfunction and histological findings in adult rats one year after whole brain irradiation. Neurologia Medico-Chirurgica (Tokyo), 41(12), 590–598.

    CAS  Google Scholar 

  40. Hellstrom, N. A., Bjork-Eriksson, T., Blomgren, K., & Kuhn, H. G. (2009). Differential recovery of neural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. Stem Cells, 27(3), 634–641.

    PubMed  Google Scholar 

  41. Ming, G. L., & Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4), 687–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Manda, K., Ueno, M., & Anzai, K. (2009). Cranial irradiation-induced inhibition of neurogenesis in hippocampal dentate gyrus of adult mice: attenuation by melatonin pretreatment. J Pineal Res, 46(1), 71–78.

    CAS  PubMed  Google Scholar 

  43. Mizumatsu, S., Monje, M. L., Morhardt, D. R., Rola, R., Palmer, T. D., & Fike, J. R. (2003). Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Research, 63(14), 4021–4027.

    CAS  PubMed  Google Scholar 

  44. Tada, E., Parent, J. M., Lowenstein, D. H., & Fike, J. R. (2000). X-irradiation causes a prolonged reduction in cell proliferation in the dentate gyrus of adult rats. Neuroscience, 99(1), 33–41.

  45. Guo, Y. R., Liu, Z. W., Peng, S., Duan, M. Y., Feng, J. W., Wang, W. F., Xu, Y. H., Tang, X., Zhang, X. Z., Ren, B. X., & Tang, F. R. (2019). The Neuroprotective Effect of Amitriptyline on Radiation-Induced Impairment of Hippocampal Neurogenesis. Dose Response, 17(4), 1559325819895912.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Monje, M. L., Mizumatsu, S., Fike, J. R., & Palmer, T. D. (2002). Irradiation induces neural precursor-cell dysfunction. Nature Medicine, 8(9), 955–962.

    CAS  PubMed  Google Scholar 

  47. Yazlovitskaya, E. M., Edwards, E., Thotala, D., Fu, A., Osusky, K. L., Whetsell, W. O. Jr., Boone, B., Shinohara, E. T., & Hallahan, D. E. (2006). Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Research, 66(23), 11179–11186.

    CAS  PubMed  Google Scholar 

  48. Rola, R., Raber, J., Rizk, A., Otsuka, S., VandenBerg, S. R., Morhardt, D. R., & Fike, J. R. (2004). Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Experimental Neurology, 188(2), 316–330.

    CAS  PubMed  Google Scholar 

  49. Schindler, M. K., Forbes, M. E., Robbins, M. E., & Riddle, D. R. (2008). Aging-dependent changes in the radiation response of the adult rat brain. International Journal of Radiation Oncology, Biology, and Physics, 70(3), 826–834.

  50. Kudo, S., Suzuki, Y., Noda, S. E., Mizui, T., Shirai, K., Okamoto, M., Kaminuma, T., Yoshida, Y., Shirao, T., & Nakano, T. (2014). Comparison of the radiosensitivities of neurons and glial cells derived from the same rat brain. Experimental and Therapeutic Medicine, 8(3), 754–758.

    PubMed  PubMed Central  Google Scholar 

  51. Rosi, S., Andres-Mach, M., Fishman, K. M., Levy, W., Ferguson, R. A., & Fike, J. R. (2008). Cranial irradiation alters the behaviorally induced immediate-early gene arc (activity-regulated cytoskeleton-associated protein). Cancer Research, 68(23), 9763–9770.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shi, L., Adams, M. M., Long, A., Carter, C. C., Bennett, C., Sonntag, W. E., Nicolle, M. M., Robbins, M., D’Agostino, R., & Brunso-Bechtold, J. K. (2006). Spatial learning and memory deficits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiation Research, 166(6), 892–899.

    CAS  PubMed  Google Scholar 

  53. Machida, M., Lonart, G., & Britten, R. A. (2010). Low (60 cGy) doses of (56)Fe HZE-particle radiation lead to a persistent reduction in the glutamatergic readily releasable pool in rat hippocampal synaptosomes. Radiation Research, 174(5), 618–623.

    CAS  PubMed  Google Scholar 

  54. Andrews, R. N., Dugan, G. O., Peiffer, A. M., Hawkins, G. A., Hanbury, D. B., Bourland, J. D., Hampson, R. E., Deadwyler, S. A., & Clinea, J. M. (2019). White Matter is the Predilection Site of Late-Delayed Radiation-Induced Brain Injury in Non-Human Primates. Radiation Research, 191(3), 217–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu, P. H., Coultrap, S., Pinnix, C., Davies, K. D., Tailor, R., Ang, K. K., Browning, M. D., & Grosshans, D. R. (2012). Radiation induces acute alterations in neuronal function. PLoS One, 7(5), e37677.

  56. Brizzee, K. R., Ordy, J. M., Kaack, M. B., & Beavers, T. (1980). Effect of prenatal ionizing radiation on the visual cortex and hippocampus of newborn squirrel monkeys. Journal of Neuropathology and Experimental Neurology, 39(5), 523–540.

  57. Parihar, V. K., Pasha, J., Tran, K. K., Craver, B. M., Acharya, M. M., & Limoli, C. L. (2015). Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Structure and Function, 220(2), 1161–1171.

  58. Parihar, V. K., & Limoli, C. L. (2013). Cranial irradiation compromises neuronal architecture in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12822–12827.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kurita, H., Kawahara, N., Asai, A., Ueki, K., Shin, M., & Kirino, T. (2001). Radiation-induced apoptosis of oligodendrocytes in the adult rat brain. Neurol Res, 23(8), 869–874.

    CAS  PubMed  Google Scholar 

  60. Sano, K., Morii, K., Sato, M., Mori, H., Tanaka, R., (2000). Radiation-induced diffuse brain injury in the neonatal rat model–radiation-induced apoptosis of oligodendrocytes. Neurologia Medico-Chirurgica (Tokyo), 40(10), 495-499; discussion 499–500.

  61. Chari, D. M., Crang, A. J., & Blakemore, W. F. (2003). Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. Journal of Neuropathology and Experimental Neurology, 62(9), 908–916.

    CAS  PubMed  Google Scholar 

  62. Panagiotakos, G., Alshamy, G., Chan, B., Abrams, R., Greenberg, E., Saxena, A., Bradbury, M., Edgar, M., Gutin, P., & Tabar, V. (2007). Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One, 2(7), e588.

  63. Turken, A., Whitfield-Gabrieli, S., Bammer, R., Baldo, J. V., Dronkers, N. F., & Gabrieli, J. D. (2008). Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. Neuroimage, 42(2), 1032–1044.

    PubMed  PubMed Central  Google Scholar 

  64. Chiang, M. C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., Klunder, A. D., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Wright, M. J., Srivastava, A., Balov, N., & Thompson, P. M. (2009). Genetics of brain fiber architecture and intellectual performance. Journal of Neuroscience, 29(7), 2212–2224.

    CAS  PubMed  Google Scholar 

  65. Madden, D. J., Spaniol, J., Costello, M. C., Bucur, B., White, L. E., Cabeza, R., Davis, S. W., Dennis, N. A., Provenzale, J. M., & Huettel, S. A. (2009). Cerebral white matter integrity mediates adult age differences in cognitive performance. Journal of Cognitive Neuroscience, 21(2), 289–302.

  66. Piao, J., Major, T., Auyeung, G., Policarpio, E., Menon, J., Droms, L., Gutin, P., Uryu, K., Tchieu, J., Soulet, D., & Tabar, V. (2015). Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell, 16(2), 198–210.

  67. Shi, L., Linville, M. C., Iversen, E., Molina, D. P., Yester, J., Wheeler, K. T., Robbins, M. E., & Brunso-Bechtold, J. K. (2009). Maintenance of white matter integrity in a rat model of radiation-induced cognitive impairment. Journal of the Neurological Sciences, 285(1–2), 178–184.

  68. Kim, C. K., Yang, V. W., & Bialkowska, A. B. (2017). The Role of Intestinal Stem Cells in Epithelial Regeneration Following Radiation-Induced Gut Injury. Current Stem Cell Reports, 3(4), 320–332.

  69. Francois, S., Mouiseddine, M., Allenet-Lepage, B., Voswinkel, J., Douay, L., Benderitter, M., Chapel, A., (2013). Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. BioMed Research International, 2013, 151679.

  70. Sun, W., Ni, X., Sun, S., Cai, L., Yu, J., Wang, J., Nie, B., Sun, Z., Ni, X., Cao, X., (2016). Adipose-derived stem cells alleviate radiation-induced muscular fibrosis by suppressing the expression of TGF-beta1. Stem Cells International, 2016, 5638204.

  71. Acharya, M. M., Christie, L. A., Lan, M. L., Giedzinski, E., Fike, J. R., Rosi, S., & Limoli, C. L. (2011). Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Research, 71(14), 4834–4845.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Acharya, M. M., Christie, L. A., Lan, M. L., & Limoli, C. L. (2013). Comparing the functional consequences of human stem cell transplantation in the irradiated rat brain. Cell Transplantation, 22(1), 55–64.

    PubMed  Google Scholar 

  73. Acharya, M. M., Martirosian, V., Christie, L. A., & Limoli, C. L. (2014). Long-term cognitive effects of human stem cell transplantation in the irradiated brain. International Journal of Radiation Biology, 90(9), 816–820.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Belkind-Gerson, J., Hotta, R., Whalen, M., Nayyar, N., Nagy, N., Cheng, L., Zuckerman, A., Goldstein, A. M., & Dietrich, J. (2016). Engraftment of enteric neural progenitor cells into the injured adult brain. BMC Neuroscience, 17, 5.

    PubMed  PubMed Central  Google Scholar 

  75. Joo, K. M., Jin, J., Kang, B. G., Lee, S. J., Kim, K. H., Yang, H., Lee, Y. A., Cho, Y. J., Im, Y. S., Lee, D. S., Lim, D. H., Kim, D. H., Um, H. D., Lee, S. H., Lee, J. I., & Nam, D. H. (2012). Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PLoS One, 7(2), e25936.

  76. Sato, Y., Shinjyo, N., Sato, M., Nilsson, M. K. L., Osato, K., Zhu, C., Pekna, M., Kuhn, H. G., & Blomgren, K. (2018). Grafting Neural Stem and Progenitor Cells Into the Hippocampus of Juvenile, Irradiated Mice Normalizes Behavior Deficits. Frontiers in Neurology, 9, 715.

    PubMed  PubMed Central  Google Scholar 

  77. Osman, A. M., Zhou, K., Zhu, C., & Blomgren, K. (2014). Transplantation of enteric neural stem/progenitor cells into the irradiated young mouse hippocampus. Cell Transplantation, 23(12), 1657–1671.

    PubMed  Google Scholar 

  78. Guzowski, J. F., McNaughton, B. L., Barnes, C. A., & Worley, P. F. (1999). Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci, 2(12), 1120–1124.

    CAS  PubMed  Google Scholar 

  79. Acharya, M. M., Rosi, S., Jopson, T., & Limoli, C. L. (2015). Human neural stem cell transplantation provides long-term restoration of neuronal plasticity in the irradiated hippocampus. Cell Transplantation, 24(4), 691–702.

  80. Smith, S. M., Giedzinski, E., Angulo, M. C., Lui, T., Lu, C., Park, A. L., Tang, S., Martirosian, V., Ru, N., Chmielewski, N. N., Liang, Y., Baulch, J. E., Acharya, M. M., & Limoli, C. L. (2020). Functional equivalence of stem cell and stem cell-derived extracellular vesicle transplantation to repair the irradiated brain. Stem Cells Translational Medicine, 9(1), 93–105.

    CAS  PubMed  Google Scholar 

  81. Acharya, M. M., Christie, L. A., Lan, M. L., Donovan, P. J., Cotman, C. W., Fike, J. R., & Limoli, C. L. (2009). Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19150–19155.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Knoepfler, P. S. (2009). Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells, 27(5), 1050–6.

  83. Daley, G. Q., Ahrlund Richter, L., Auerbach, J. M., Benvenisty, N., Charo, R. A., Chen, G., Deng, H. K., Goldstein, L. S., Hudson, K. L., Hyun, I., Junn, S. C., Love, J., Lee, E. H., McLaren, A., Mummery, C. L., Nakatsuji, N., Racowsky, C., Rooke, H., Rossant, J., Scholer, H. R., Solbakk, J. H., Taylor, P., Trounson, A. O., Weissman, I. L., Wilmut, I., Yu, J., & Zoloth, L. (2007). Ethics. The ISSCR guidelines for human embryonic stem cell research. Science, 315(5812), 603–604.

    CAS  PubMed  Google Scholar 

  84. Franklin, R. J., Bayley, S. A., & Blakemore, W. F. (1996). Transplanted CG4 cells (an oligodendrocyte progenitor cell line) survive, migrate, and contribute to repair of areas of demyelination in X-irradiated and damaged spinal cord but not in normal spinal cord. Experimental Neurology, 137(2), 263–276.

    CAS  PubMed  Google Scholar 

  85. Irvine, K. A., & Blakemore, W. F. (2007). A different regional response by mouse oligodendrocyte progenitor cells (OPCs) to high-dose X-irradiation has consequences for repopulating OPC-depleted normal tissue. European Journal of Neuroscience, 25(2), 417–424.

    PubMed  Google Scholar 

  86. Sypecka, J., & Sarnowska, A. (2014). The neuroprotective effect exerted by oligodendroglial progenitors on ischemically impaired hippocampal cells. Molecular Neurobiology, 49(2), 685–701.

  87. Burns, T. C., Awad, A. J., Li, M. D., & Grant, G. A. (2016). Radiation-induced brain injury: low-hanging fruit for neuroregeneration. Neurosurgical Focus, 40(5), E3.

  88. DiCarlo, A. L., Tamarat, R., Rios, C. I., Benderitter, M., Czarniecki, C. W., Allio, T. C., Macchiarini, F., Maidment, B. W., & Jourdain, J. R. (2017). Cellular therapies for treatment of radiation injury: report from a NIH/NIAID and IRSN workshop. Radiation Research, 188(2), e54-e75.

  89. Wang, G. H., Liu, Y., Wu, X. B., Lu, Y., Liu, J., Qin, Y. R., Li, T., & Duan, H. F. (2016). Neuroprotective effects of human umbilical cord-derived mesenchymal stromal cells combined with nimodipine against radiation-induced brain injury through inhibition of apoptosis. Cytotherapy, 18(1), 53–64.

    PubMed  Google Scholar 

  90. Wang, G., Ren, X., Yan, H., Gui, Y., Guo, Z., Song, J., & Zhang, P. (2020). Neuroprotective Effects of Umbilical Cord-Derived Mesenchymal Stem Cells on Radiation-Induced Brain Injury in Mice. Annals of Clinical and Laboratory Science, 50(1), 57–64.

    PubMed  Google Scholar 

  91. Soria, B., Martin-Montalvo, A., Aguilera, Y., Mellado-Damas, N., Lopez-Beas, J., Herrera-Herrera, I., Lopez, E., Barcia, J. A., Alvarez-Dolado, M., Hmadcha, A., & Capilla-Gonzalez, V. (2019). Human Mesenchymal Stem Cells Prevent Neurological Complications of Radiotherapy. Frontiers in Cellular Neuroscience, 13, 204.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Liao, H., Wang, H., Rong, X., Li, E., Xu, R. H., & Peng, Y. (2017). Mesenchymal Stem Cells Attenuate Radiation-Induced Brain Injury by Inhibiting Microglia Pyroptosis. BioMed Research International, 2017, 1948985.

    PubMed  PubMed Central  Google Scholar 

  93. Shao, H., Im, H., Castro, C. M., Breakefield, X., Weissleder, R., & Lee, H. (2018). New technologies for analysis of extracellular vesicles. Chemical Reviews, 118(4), 1917–1950.

  94. Mahdavipour, M., Hassanzadeh, G., Seifali, E., Mortezaee, K., Aligholi, H., Shekari, F., Sarkoohi, P., Zeraatpisheh, Z., Nazari, A., Movassaghi, S., & Akbari, M. (2019). Effects of neural stem cell-derived extracellular vesicles on neuronal protection and functional recovery in the rat model of middle cerebral artery occlusion. Cell Biochemistry and Function.

  95. Jafarinia, M., Alsahebfosoul, F., Salehi, H., Eskandari, N., & Ganjalikhani-Hakemi, M. (2020). Mesenchymal stem cell-derived extracellular vesicles: a novel cell-free therapy. Immunological Investigations, 1–23.

  96. Taheri, B., Soleimani, M., Fekri Aval, S., Esmaeili, E., Bazi, Z., & Zarghami, N. (2019). Induced pluripotent stem cell-derived extracellular vesicles: a novel approach for cell-free regenerative medicine. Journal of Cellular Physiology, 234(6), 8455–8464.

    CAS  PubMed  Google Scholar 

  97. Baulch, J. E., Acharya, M. M., Allen, B. D., Ru, N., Chmielewski, N. N., Martirosian, V., Giedzinski, E., Syage, A., Park, A. L., Benke, S. N., Parihar, V. K., & Limoli, C. L. (2016). Cranial grafting of stem cell-derived microvesicles improves cognition and reduces neuropathology in the irradiated brain. Proceedings of the National Academy of Sciences of the United States of America, 113(17), 4836–4841.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Papaccio, F., Paino, F., Regad, T., Papaccio, G., Desiderio, V., & Tirino, V. (2017). Concise review: cancer cells, cancer stem cells, and mesenchymal stem cells: influence in cancer development. Stem Cells Translational Medicine, 6(12), 2115–2125.

  99. Liu, X., Li, W., Fu, X., & Xu, Y. (2017). The Immunogenicity and Immune Tolerance of Pluripotent Stem Cell Derivatives. Frontiers in Immunology, 8, 645.

    PubMed  PubMed Central  Google Scholar 

  100. Diehl, R., Ferrara, F., Muller, C., Dreyer, A. Y., McLeod, D. D., Fricke, S., & Boltze, J. (2017). Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches. Cellular and Molecular Immunology, 14(2), 146–179.

  101. Szot, G. L., Yadav, M., Lang, J., Kroon, E., Kerr, J., Kadoya, K., Brandon, E. P., Baetge, E. E., Bour-Jordan, H., & Bluestone, J. A. (2015). Tolerance induction and reversal of diabetes in mice transplanted with human embryonic stem cell-derived pancreatic endoderm. Cell Stem Cell, 16(2), 148–157.

  102. Chu, D. T., Nguyen, T. T., Tien, N. L. B., Tran, D. K., Jeong, J. H., Anh, P. G., Thanh, V. V., Truong, D. T., & Dinh, T. C. (2020). Recent progress of stem cell therapy in cancer treatment: molecular mechanisms and potential applications. Cells, 9(3).

  103. Vakhshiteh, F., Atyabi, F., & Ostad, S. N. (2019). Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. International Journal of Nanomedicine, 14, 2847–2859.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Balentova, S., & Adamkov, M. (2015). Molecular, cellular and functional effects of radiation-induced brain injury: a review. International Journal of Molecular Sciences, 16(11), 27796–27815.

  105. Acharya, M. M., Green, K. N., Allen, B. D., Najafi, A. R., Syage, A., Minasyan, H., Le, M. T., Kawashita, T., Giedzinski, E., Parihar, V. K., West, B. L., Baulch, J. E., & Limoli, C. L. (2016). Elimination of microglia improves cognitive function following cranial irradiation. Science Reports, 6, 31545.

    CAS  Google Scholar 

  106. Montay-Gruel, P., Acharya, M. M., Petersson, K., Alikhani, L., Yakkala, C., Allen, B. D., Ollivier, J., Petit, B., Jorge, P. G., Syage, A. R., Nguyen, T. A., Baddour, A. A. D., Lu, C., Singh, P., Moeckli, R., Bochud, F., Germond, J. F., Froidevaux, P., Bailat, C., Bourhis, J., Vozenin, M. C., & Limoli, C. L. (2019). Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 116(22), 10943–10951.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was fund by National Natural Science Foundation of China (81300985), Liaoning Revitalization Talents Program (XLYC1807124), Natural Science Foundation of Liaoning Province (2019-MS-075) and Dalian Science and Technology Innovation Program (2019J13SN109, 2018J13SN125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Li.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, C., Gao, Y., Lan, X. et al. Stem-Cell Therapy as a Potential Strategy for Radiation-Induced Brain Injury. Stem Cell Rev and Rep 16, 639–649 (2020). https://doi.org/10.1007/s12015-020-09984-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09984-7

Keywords

Navigation