Skip to main content
Log in

Lipschitz spaces adapted to Schrödinger operators and regularity properties

  • Published:
Revista Matemática Complutense Aims and scope Submit manuscript

Abstract

Consider the Schrödinger operator \(\mathcal {{L}}=-\Delta +V\) in \(\mathbb {{R}}^n, n\ge 3,\) where V is a nonnegative potential satisfying a reverse Hölder condition of the type

$$\begin{aligned} \left( \frac{1}{|B|}\int _B V(y)^qdy\right) ^{1/q}\le \frac{C}{|B|}\int _B V(y)dy, \, \text {{ for some }}q>n/2. \end{aligned}$$

We define \(\Lambda ^\alpha _\mathcal {{L}},\, 0<\alpha <2,\) the class of measurable functions such that

$$\begin{aligned} \Vert \rho (\cdot )^{-\alpha }f(\cdot )\Vert _\infty<\infty \quad \, \, \text {and}\,\, \quad \sup _{|z|>0}\frac{\Vert f(\cdot +z)+f(\cdot -z)-2f(\cdot )\Vert _\infty }{|z|^\alpha }<\infty , \end{aligned}$$

where \(\rho \) is the critical radius function associated to \(\mathcal {L}\). Let \(W_y f = e^{-y\mathcal {{L}}}f\) be the heat semigroup of \(\mathcal {{L}}\). Given \(\alpha >0,\) we denote by \(\Lambda _{\alpha /2}^{{W}}\) the set of functions f which satisfy

$$\begin{aligned} \Vert \rho (\cdot )^{-\alpha }f(\cdot )\Vert _\infty <\infty \hbox { and } \Big \Vert \partial _y^k{W}_y f \Big \Vert _{L^\infty (\mathbb {R}^{n})}\le C_\alpha y^{-k+\alpha /2},\;\, \, \mathrm{with }\, k=[\alpha /2]+1, y>0. \end{aligned}$$

We prove that for \(0<\alpha \le 2-n/q\), \(\Lambda ^\alpha _\mathcal {{L}}= \Lambda _{\alpha /2}^{{W}}.\) As application, we obtain regularity properties of fractional powers (positive and negative) of the operator \(\mathcal {{L}}\), Schrödinger Riesz transforms, Bessel potentials and multipliers of Laplace transforms type. The proofs of these results need in an essential way the language of semigroups. Parallel results are obtained for the classes defined through the Poisson semigroup, \(P_yf= e^{-y\sqrt{\mathcal {{L}}}}f.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Falahah, I., Stinga, P.R., Torrea, J.L.: A note on the almost everywhere convergence to initial data for some evolution equations. Potential Anal. 40(2), 195–202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bongioanni, B., Harboure, E., Salinas, O.: Weighted inequalities for negative powers of Schrödinger operators. J. Math. Anal. Appl. 348, 12–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bongioanni, B., Harboure, E., Salinas, O.: Riesz transforms related to Schrödinger operators acting on BMO type spaces. J. Math. Anal. Appl. 357, 115–131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dziubański, J., Garrigós, G., Martínez, T., Torrea, J.L., Zienkiewicz, J.: \(BMO\) spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality. Math. Z. 249, 329–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dziubański, J., Zienkiewicz, J.: \(H^p\) spaces associated with Schrödinger operators, Fourier Analysis and Related Topics, Banach Center Publi. 56, Inst. Math., Polish Acad. Sci. (2002), 45–53

  6. Dziubański, J., Zienkiewicz, J.: \(H^p\) spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloq. Math. 98(1), 5–37 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garrigós, G., Hartzstein, S., Signes, T., Torrea, J.L., Viviani, B.: Pointwise convergence to initial data of heat and Laplace equations. Trans. Am. Math. Soc. 369(9), 6575–6600 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gatto, A.E., Urbina, W.O.: On Gaussian Lipschitz spaces and the boundedness of fractional integrals and fractional derivatives on them. Quaest. Math. 38, 1–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krantz, S.G.: Lipschitz spaces, smoothness of functions, and approximation theory. Exposition. Math. 1(3), 193–260 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Krylov, N.V.: Lectures on Elliptic and Parabolic Equations in Hölder Spaces, Graduate Studies in Mathematics 12. American Mathematical Society, Providence (1996)

    Google Scholar 

  11. Kurata, K.: An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials. J. Lond. Math. Soc. 62(2), 885–903 (2000)

    Article  MATH  Google Scholar 

  12. Liu, L., Sjögren, P.: A characterization of the Gaussian Lipschitz space and sharp estimates for the Ornstein-Uhlenbeck Poisson kernel. Rev. Mat. Iberoam. 32, 1189–1210 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ma, T., Stinga, P.R., Torrea, J.L., Zhang, C.: Regularity properties of Schrödinger operators. J. Math. Anal. Appl. 388, 817–837 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shen, Z.: \(L^p\) estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45, 513–546 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series. Princeton University Press, Princeton (1970)

    Google Scholar 

  17. Stinga, P.R., Torrea, J.L.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35, 2092–2122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stinga, P.R., Torrea, J.L.: Regularity theory for the fractional harmonic oscillator. J. Funct. Anal. 260, 3097–3131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stinga, P.R., Torrea, J.L.: Regularity theory and extension problem for fractional nonlocal parabolic equations and the master equation. SIAM J. Math. Anal. 49(5), 3893–3924 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Taibleson, M.: On the theory of Lipschitz spaces of distributions on Euclidean n-space I. J. Math. Mech. 13, 407–479 (1964)

    MathSciNet  MATH  Google Scholar 

  21. Taibleson, M.: On the theory of Lipschitz spaces of distributions on Euclidean n-space II. J. Math. Mech. 14, 821–839 (1965)

    MathSciNet  Google Scholar 

  22. Taibleson, M.: On the theory of Lipschitz spaces of distributions on Euclidean n-space III. J. Math. Mech. 15, 973–981 (1966)

    MathSciNet  MATH  Google Scholar 

  23. Zygmund, A.: Trigonometric Series, vol. I, 2nd edn. Cambridge University Press, New York (1959)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are highly indebted to the referees for the very careful reading of the manuscript. The precise comments and remarks greatly helped the authors to improve the manuscript and in particular the proofs of Lemma 2.6 and Theorem 3.11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Torrea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Marta De León-Contreras was partially supported by grant EPSRC Research Grant EP/S029486/1. José L. Torrea was partially supported by Grant PGC2018-099124-B-I00 (MINECO/FEDER)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De León-Contreras, M., Torrea, J.L. Lipschitz spaces adapted to Schrödinger operators and regularity properties. Rev Mat Complut 34, 357–388 (2021). https://doi.org/10.1007/s13163-020-00357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13163-020-00357-9

Keywords

Mathematics Subject Classification

Navigation