Skip to main content
Log in

Modeling and Analysis of Stochastic Reaction Kinetics in Biomolecular Systems

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

Chemical reactions in small-volume reactors such as biological cells are highly variable due to the stochastic collision events of the small number of molecules. To analyze and design these stochastic biomolecular reactions, computational tools have been developed based on rigorous mathematical foundations. This paper reviews fundamental theory and computational tools for the modeling, analysis, and design of stochastic biomolecular systems. Specifically, we first review the governing equation of the stochastic kinetics using the first principle modeling. Then, three computational approaches are introduced for simulating and/or analyzing the governing equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carter, A.H.: Classical and Statistical Thermodynamics. Pearson Education International, Upper Saddle River (2001)

    Google Scholar 

  2. Dowdy, G.R., Barton, P.I.: Bounds on stochastic chemical kinetic systems at steady state. J. Chem. Phys. 148(8), 084106 (2018)

    Article  Google Scholar 

  3. Dowdy, G.R., Barton, P.I.: Dynamic bounds on stochastic chemical kinetic systems using semidefinite programming. J. Chem. Phys. 149(7), 074103 (2018)

    Article  Google Scholar 

  4. Eldar, A., Elowitz, M.B.: Functional roles for noise in genetic circuits. Nature 467(2), 167–173 (2010)

    Article  Google Scholar 

  5. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression in a single cell. Science 297(5584), 1183–1186 (2002)

    Article  Google Scholar 

  6. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339–342 (2000)

    Article  Google Scholar 

  7. Ghusinga, K.R., Vargas-Garcia, C.A., Lamperski, A., Singh, A.: Exact lower and upper bounds on stationary moments in stochastic biochemical systems. Phys. Biol. 14(4), 04LT01 (2017)

    Article  Google Scholar 

  8. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  9. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188(1–3), 404–425 (1992)

    Article  Google Scholar 

  10. Hsiao, V., Hori, Y., Rothemund, P.W.K., Murray, R.M.: A population-based temporal logic gate for timing and recording chemical events. Mol. Syst. Biol. 12, 869 (2016)

    Article  Google Scholar 

  11. Kuntz, J., Thomas, P., Stan, G.-B., Barahona, M.: Bounding the stationary distributions of the chemical master equation via mathematical programming. J. Chem. Phys. 151(3), 034109 (2019)

    Article  Google Scholar 

  12. Lakatos, E., Ale, A., Kirk, P.D.W., Stumpf, M.P.H.: Multivariate moment closure techniques for stochastic kinetic models. J. Chem. Phys. 143(9), 094107 (2015)

    Article  Google Scholar 

  13. Lasserre, J.-B., Prieto-Rumeau, T.: SDP vs. LP relaxations for the moment approach in some performance evaluation problems. Stochastic Models 20(4), 439–456 (2014)

    Article  MathSciNet  Google Scholar 

  14. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. USA 94(3), 814–819 (1997)

    Article  Google Scholar 

  15. Niederholtmeyer, H., Sun, Z., Hori, Y., Yeung, E., Verpoorte, A., Murray, R.M., Maerkl, S.J.: Rapid cell-free forward engineering of novel genetic ring oscillators. eLife 4, e09771 (2015)

    Article  Google Scholar 

  16. Raj, A., van Oudenaarden, A.: Stochastic gene expression and its consequences. Cell 135(2), 216–226 (2008)

    Article  Google Scholar 

  17. Raser, J.M., O’Shea, E.K.: Noise in gene expression: origins, consequences and control. Science 309(5743), 2010–2013 (2005)

    Article  Google Scholar 

  18. Sakurai, Y., Hori, Y.: A convex approach to steady state moment analysis for stochastic chemical reactions. In: Proceedings of IEEE Conference on Decision and Control, pp. 1206–1211 (2017)

  19. Sakurai, Y., Hori, Y.: Optimization-based synthesis of stochastic biocircuits with statistical specifications. J. R. Soc. Interface 15(138), 20170709 (2018)

    Article  Google Scholar 

  20. Sakurai, Y., Hori, Y.: Bounding transient moments of stochastic chemical reactions. IEEE Control Syst. Lett. 3(2), 290–295 (2019)

    Article  Google Scholar 

  21. Singh, A., Hespanha, J.P.: Lognormal moment closures for biochemical reactions. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2063–2068 (2006)

  22. Singh, A., Hespanha, J.P.: A derivative matching approach to moment closure for the stochastic logistic model. Bull. Math. Biol. 69(6), 1909–1925 (2007)

    Article  MathSciNet  Google Scholar 

  23. Singh, A., Hespanha, J.P.: Approximate moment dynamics for chemically reacting systems. IEEE Trans. Autom. Control 56(2), 414–418 (2011)

    Article  MathSciNet  Google Scholar 

  24. Smith, H.L.: Monotone dynamical system: an introduction to the theory of com-petitive and cooperative systems. American Mathematical Society, Providence (1995)

    Google Scholar 

  25. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11–12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  26. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3—a Matlab software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11, 545–581 (1999)

    Article  MathSciNet  Google Scholar 

  27. Zhao, Y.-B., Kim, J., Hespanha, J.P.: Hybrid moment computation algorithm for biochemical reaction networks. In: Proceedings of IEEE Conference on Decision and Control, pp. 1693–1698 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Hori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hori, Y. Modeling and Analysis of Stochastic Reaction Kinetics in Biomolecular Systems. New Gener. Comput. 38, 367–377 (2020). https://doi.org/10.1007/s00354-020-00095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-020-00095-y

Keywords

Navigation