Skip to main content
Log in

Capsaicin and Its Analogues Impede Nocifensive Response of Caenorhabditis elegans to Noxious Heat

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Capsaicin is the most abundant pungent molecule identified in red chili peppers, and it is widely used for food flavoring, in pepper spray for self-defense devices and recently in ointments for the relief of neuropathic pain. Capsaicin and several other related vanilloid compounds are secondary plant metabolites. Capsaicin is a selective agonist of the transient receptor potential channel, vanilloid subfamily member 1 (TRPV1). After exposition to vanilloid solution, Caenorhabditis elegans wild type (N2) and mutants were placed on petri dishes divided in quadrants for heat stimulation. Thermal avoidance index was used to phenotype each tested C. elegans experimental groups. The data revealed for the first-time that capsaicin can impede nocifensive response of C. elegans to noxious heat (32–35 °C) following a sustained exposition. The effect was reversed 6 h post capsaicin exposition. Additionally, we identified the capsaicin target, the C. elegans transient receptor potential channel OCR-2 and not OSM-9. Further experiments also undoubtedly revealed anti-nociceptive effect for capsaicin analogues, including olvanil, gingerol, shogaol and curcumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    CAS  PubMed  Google Scholar 

  2. Yardim Y (2011) Sensitive detection of capsaicin by adsorptive stripping voltammetry at a boron-doped diamond electrode in the presence of sodium dodecylsulfate. Electroanalysis 23(10):2491–2497

    Article  CAS  Google Scholar 

  3. Ochoa-Alejo N (2006) Capsaicin accumulation in Capsicum spp. suspension cultures. Methods Mol Biol 318:327–334

    CAS  PubMed  Google Scholar 

  4. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  5. Cortright DN, Szallasi A (2004) Biochemical pharmacology of the vanilloid receptor TRPV1. Eur J Biochem 271:1814–1819

    Article  CAS  PubMed  Google Scholar 

  6. Knotkova H, Pappagallo M, Szallasi A (2008) Capsaicin (TRPV1 Agonist) therapy for pain relief: farewell or revival? Clin J Pain 24(2):142–154

    Article  PubMed  Google Scholar 

  7. Klein AH, Trannyguen M, Joe CL, Lodi CM, Carstens E (2005) Thermosensitive transient receptor potential (TRP) channel agonists and their role in mechanical, thermal and nociceptive sensations as assessed using animal models. Chemosens Percept 8(2):96–108

    Article  CAS  Google Scholar 

  8. Smart D, Jerman JC, Gunthorpe MJ, Brough SJ, Ranson J, Cairns W, Hayes PD, Randall AD, Davis JB (2001) Characterisation using FLIPR of human vanilloid VR1 receptor pharmacology. Eur J Pharmacol 417(1–2):51–58

    Article  CAS  PubMed  Google Scholar 

  9. Jancso G, Dux M, Oszlacs O, Santha P (2008) Activation of the transient receptor potential vanilloid-1 (TRPV1) channel opens the gate for pain relief. Br J Pharmacol 155:1139–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wittenburg N, Baumeister R (1999) Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. Proc Natl Acad Sci USA 96(18):10477–10482

    Article  CAS  PubMed  Google Scholar 

  11. Kahn-Kirby AH, Bargmann CI (2006) TRP channels in C. elegans. Annu Rev Physiol 68:719–736

    Article  CAS  PubMed  Google Scholar 

  12. Glauser DA, Chen WC, Agin R, MacInnis B, Hellman AB, Garrity PA, Man-WahTan, Goodman MB (2011) Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genet Soc Ame 188:91–103

    CAS  Google Scholar 

  13. Venkatachalam K, Luo J, Montell C (2014) Evolutionarily conserved, multitasking TRP channels: lessons from worms and flies. Handb Exp Pharmacol 223:937–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tobin DM, Madsen DM, Kahn-Kirby A, Peckol EL, Moulder G, Barstead R, Maricq AV, Bargmann CI (2002) Combinatorial expresson of TRPV channel proteins defines their sensory functions and subcellular localisation in C. elegans neurons. Neuron 35:307–318

    Article  CAS  PubMed  Google Scholar 

  15. Nkambeu B, Ben Salem J, Leonelli S, Amin Marashi F, Beaudry F (1019) EGL-3 and EGL-21 are required to trigger nocifensive response of Caenorhabditis elegans to noxious heat. Neuropeptides 73:41–48

    Article  CAS  Google Scholar 

  16. Alsalem M, Millns P, Altarifi A, El-Salem K, Chapman V, Kendall DA (2016) Anti-nociceptive end desensitizing effects of olvanil of capsaicin-induced thermal hyperalgesia in the rat. BMC Pharmacol Toxicol 17(31):1–11

    Google Scholar 

  17. Zhu X, Li Q, Chang R, Yang D, Song Z, Guo Q, Huang C (2014) Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and Cox-2 in rat model. PLoS ONE 9(3):1–9

    Google Scholar 

  18. Bhattarai S, Tran VH, Duke CC (2001) The stability of Gingerol and Shogaol in aqueous solutions. J Pharm Sci 90(10):1658–1664

    Article  CAS  PubMed  Google Scholar 

  19. Walpole CSJ, Bevan S, Bovermann G, Boelsterli JJ, Breckenridge R (1994) The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem 37:1942–1954

    Article  CAS  PubMed  Google Scholar 

  20. Geng S, Zheng Y, Meng M, Guo Z, Cao N (2016) Gingerol reverses the cancer-promoting effect of capsaicin by increased TRPV1 level in urethane-induce lung carcinogenic model. J Agric Food Chem 64:6203–6211

    Article  CAS  PubMed  Google Scholar 

  21. Kim E-C, Min J-K, Kim T-Y, Lee S-J, Yang H-O (2005) [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem Biophys Res Commun 335:300–308

    Article  CAS  PubMed  Google Scholar 

  22. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Margie O, Palmer C, Chin-Sang I (2013) C. elegans chemotaxis assay. J Vis Exp 74:1–6

    Google Scholar 

  24. Porta-De-La-Riva M, Fontrodona L, Villanueva A, Cerón J (2012) Basic Caenorhabditis elegans methods: synchronization and observation. J Vis Exp 64:1–9

    Google Scholar 

  25. Mori I, Ohshima Y (1995) Neuralregulationofthermotaxis in Caenorhabditis elegans. Nature 376:344–348

    Article  CAS  PubMed  Google Scholar 

  26. Koutarou DK, Atsushi M, Kunihiro M, Ikue M (2004) The C. elegans thermosensory neuron AFD responds to warming. Curr Biol 14:1291–1295

    Article  CAS  Google Scholar 

  27. Liu S, Schulze E, Baumeister R (2012) Temperature- and touch-sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in Caenorhabditis elegans. PLoS ONE 7(3):1–13

    Google Scholar 

  28. Groninger H, Schister RE (2012) Topical capsaicin for neuropathic pain #255. J Palliat Med 15(8):946–947

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee JY, Shin TJ, Choi JM, Seo KS, Kim HJ (2013) Antinociceptive curcuminoid, KMS4034, effects on inflammatory and neuropathic pain likely via modulating TRPV1 in mice. Br J Anaesth 111(4):667–672

    Article  CAS  PubMed  Google Scholar 

  30. Viswanadhan VN, Sun Y, Norman MH (2007) Three-dimensional quantitative structure–activity relationships and activity predictions of human TRPV1 channel antagonists: comparative molecular field analysis and comparative molecular similarity index analysis of cinnamides. J Med Chem 50(23):5608–5619

    Article  CAS  PubMed  Google Scholar 

  31. Salat K, Filipek B (2015) Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and neuropathic pain models in mice. J Zhejiang Univ Sci B 16(3):167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones VM, Moore K, Peterson D (2011) Capsaicin 8% topical patch (Qutenza)—a review of the evidence. J Pain Palliat Care Pharmacother 25:32–41

    Article  PubMed  Google Scholar 

  33. Gauthier M-L, Beaudry F, Vachon P (2013) Intrathecal [6]-Gingerol administration alleviates peripherally induced neuropathic pain in male Sprague-Dawley rats. Phytother Res 27(8):1251–1254

    Article  CAS  PubMed  Google Scholar 

  34. Tamburini N, Bollini G, Volta AC, Cavallesco G, Maniscalco P, Spadaro S, Qurantotto F, Ragazzi R (2018) Capsaicin patch for persistent postoperative pain after thoracoscopic surgery, report of two cases. JOVS 4(3):1–4

    Google Scholar 

Download references

Acknowledgements

This project was funded by the National Sciences and Engineering Research Council of Canada (F. Beaudry discovery Grant No. RGPIN-2015-05071). Laboratory equipment was funded by the Canadian Foundation for Innovation (CFI) and the Fonds de Recherche du Québec (FRQ), the Government of Quebec (F.Beaudry CFI John R. Evans Leaders Grant No. 36706). A PhD scholarship was awarded to J. Ben Salem with a Grant obtained from Fondation de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Beaudry.

Ethics declarations

Conflict of Interest

The authors declared they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkambeu, B., Salem, J.B. & Beaudry, F. Capsaicin and Its Analogues Impede Nocifensive Response of Caenorhabditis elegans to Noxious Heat. Neurochem Res 45, 1851–1859 (2020). https://doi.org/10.1007/s11064-020-03049-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03049-4

Keywords

Navigation