Skip to main content
Log in

Simulation of Boriding Kinetics of AISI D2 Steel using Two Different Approaches

  • SIMULATION
  • Published:
Metal Science and Heat Treatment Aims and scope

Diffusion of boron in FeB and Fe2B layers under solid boriding of steel AISI D2 (the Russian counterpart is Kh12MF) is simulated. Two approaches are used to assess the diffusion coefficients in solid-phase boriding, i.e., the concept of the mean value of diffusion coefficient in the FeB – Fe2B system and consideration of the growth kinetics of each of the two boride layers with the use of a system of conventional differential equations describing the partial chemical reactions by a parabolic law (the Dybkov method). The activation energies of boron diffusion in the FeB and Fe2B layers of steel AISI D2 are computed. The condition of extreme boriding is used to verify the two approaches experimentally. Comparative analysis of the computed and published data shows their good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. K. Sinha, “Boriding (boronizing) of steels,” J. Heat Treat., 4, 437 – 447 (1991).

    Google Scholar 

  2. X. Qiao, H. R. Stock, A. Kueper, and C. Jarms, “Effects of B(CH3O)3 content on a PACVD plasma-boriding process,” Surf. Coat. Technol., 131, 291 – 293 (2000).

    Article  CAS  Google Scholar 

  3. A. Pertek and M. Kulka, “Characterization of complex (B + C) diffusion layers formed on chromium and nickel-based low-carbon steel,” Appl. Surf. Sci., 202, 252 – 260 (2002).

    Article  CAS  Google Scholar 

  4. C. Martini, G. Palombarini, G. Poli, and D. Prandstraller, “Sliding and abrasive wear behavior of boride coatings,” Wear, 256, 608 – 613 (2004).

    Article  CAS  Google Scholar 

  5. E. Filep and S. Farkas, “Kinetics of plasma-assisted boriding,” Surf. Coat. Technol., 199, 1 – 6 (2005).

    Article  CAS  Google Scholar 

  6. M. Kulka, N. Makuch, A. Pertek, and L. Maldzinski, “Simulation on growth kinetics of boride layers formed on Fe during gas boriding in H2– BCl3 atmosphere,” J. Solid State Chem., 199, 196 – 203 (2014).

    Article  Google Scholar 

  7. M. Keddam, M. Kulka, N. Makuch, et al., “A kinetic model for estimating the boron activation energies in the FeB and Fe2B layers during the gas-boriding on Armco iron: Effect of boride incubation times,” Appl. Surf. Sci., 298, 155 – 163 (2014).

    Article  CAS  Google Scholar 

  8. A. Kaouka, O. Allaoui, and M. Keddam, “Properties of boride layer on borided SAE 1035 steel by molten salt,” Appl. Mech. Mater., 467, 116 – 121 (2014).

    Article  Google Scholar 

  9. I. Campos, R. Torres, O. Bautista, et al., “Effect of boron paste thickness on the growth kinetics of polyphase boride coatings during the boriding process,” Appl. Surf. Sci., 252, 2396 – 2403 (2006).

    Article  CAS  Google Scholar 

  10. M. Elias-Espinosa, M. Ortiz-Domingues, M. Keddam, et al., “Boriding kinetics and mechanical behavior of AISI O1 steel,” Surf. Eng., 31, 588 – 597 (2015).

    Article  CAS  Google Scholar 

  11. K. G. Anthymidis, E. Stergioudis, and D. N. Tsipas, “Boriding in a fluidized bed reactor,” Mater. Lett., 51, 156 – 160 (2001).

    Article  CAS  Google Scholar 

  12. Cabeo E. Rodriguez, G. Laudien, S. Biemer, et al., “Plasma-assisted boriding of industrial components in a pulsed d.c. glow discharge,” Surf. Coat. Technol., 116 – 119, 229 – 233 (1999).

  13. M. Keddam, R. Chegroune, M. Kulka, et al., “Characterization, tribological and mechanical properties of plasma paste borided AISI 316 steel,” Trans. Indian Inst. Metals, 71, 79 – 90 (2018).

    Article  CAS  Google Scholar 

  14. Ozhan Kayacan, Salim Sahin, and Filiz Tastan, “A study for boronizing process within not extensive thermostatistics,” Mathem. Comp. Appl., 15, 14 – 24 (2010).

    Google Scholar 

  15. I. Campos-Silva, N. López-Perrusquia, M. Ortiz-Domínguez, et al., “Characterization of boride layers formed at the surface of gray cast irons,” Kovove Mater., 47, 75 – 81 (2009).

    CAS  Google Scholar 

  16. M. Ortiz-Domínguez, M. A. Flores-Renteria, M. Keddam, et al., “Simulation of the growth kinetics of the Fe2B layers formed on gray cast irons during the powder-pack boriding process,” Mater. Technol., 48, 905 – 916 (2014).

    Google Scholar 

  17. M. Elias-Espinosa, M. Ortiz-Domínguez, M. Keddam, et al., “Growth kinetics of the Fe2B layers and adhesion on Armco iron substrate,” J. Mater. Eng. Perform., 23, 2943 – 2952 (2014).

    Article  CAS  Google Scholar 

  18. M. Keddam, M. Ortiz-Domínguez, M. Elias-Espinosa et al., “Kinetic investigation and wear properties of Fe2B layers on AISI 12L14 steel,” Metall. Mater. Trans. A, 49, 1895 – 1907 (2018).

    Article  CAS  Google Scholar 

  19. I. Campos-Silva, M. Flores-Jiménez, D. Bravo Bárcenas, et al., “Evolution of boride layers during a diffusion annealing process,” Surf. Coat. Technol., 309, 155 – 163 (2017).

    Article  CAS  Google Scholar 

  20. I. Campos, R. Torres, G. Ramírez, et al., “Growth kinetics of iron boride layers: Dimensional analysis,” Appl. Surf. Sci., 252, 8662 – 8667 (2006).

    Article  CAS  Google Scholar 

  21. C. I. Villa Velázquez-Mendoza, J. L. Rodriguez-Mendoza, V. Ibarra-Galvan, et al., “Effect of substrate roughness, time and temperature on the processing of iron boride coatings: experimental and statistical approaches,” Int. J. Surf. Sci. Eng., 8, 71 – 91 (2014).

    Article  Google Scholar 

  22. I. Campos, M. Islas, G. Ramírez, C. Villa Velázquez, and C. Mota, “Growth kinetics of borided layers: Artificial neural network and least square approaches,” Appl. Surf. Eng., 253, 6226 – 6231 (2007).

    Article  CAS  Google Scholar 

  23. I. Campos, M. Islas, E. González, et al., “Use of fuzzy logic for modeling the growth of Fe2B layers during boronizing,” Surf. Coat. Technol., 201, 2717 – 2723 (2006).

    Article  CAS  Google Scholar 

  24. R. D. Ramdan, T. Takaki, and Y. Tomita, “Free energy problem for the simulations of the growth of Fe 2b phase using phasefield method,” Mater. Trans., 49, 625 – 2631 (2008).

    Article  Google Scholar 

  25. R. Kouba, M. Keddam, and M. Kulka, “Modelling of the paste boriding process,” Surf. Eng., 31, 563 – 569 (2015).

    Article  CAS  Google Scholar 

  26. I. Campos-Silva, R. Taledo-Rosas, H. D. Santos-Medina, and C. Lopez-Garcia, “Boride layers: growth kinetics and mechanical characterization,” in: Rafael Colas and George E. Totten (eds.), Encyclopedia of Iron, Steel and Their Alloys, Five-Volume Set (2015) (DOI: https://doi.org/10.1081/E-EISA-120052666).

  27. Y. Ugaste, “On the interstitial phase growth kinetics at diffusional precipitation of metals,” in: Chemical and Thermal Treatment of Metals and Alloys, Belarus Technical Institute Press (1977), pp. 40 – 42.

  28. V. I. Dybkov, “Effect of microstructure on the wear resistance of borided Fe – Cr alloys,” Int. J. Mater. Res., 104, 617 – 629 (2013).

    Article  CAS  Google Scholar 

  29. J. Ratajski, “Model of growth kinetics of nitrided layer in the binary Fe – N system,” Zeitschrift für Metallkunde, 95, 823 – 828 (2004).

    Article  CAS  Google Scholar 

  30. M. A. J. Somers and. E. J. Mittemeijer, “Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficient for nitrogen in iron nitrides,” Metall. Mater. Trans. A, 26, 57 – 74 (1995).

  31. L. G. Yu, X. J. Chen, A. K. Khor, and G. Sundararajan, “FeB/Fe2B phase transformation during SPS pack boriding: Boride layer growth kinetics,” Acta Mater., 53, 2361 – 2368 (2005).

    Article  CAS  Google Scholar 

  32. M. Keddam, “Computer simulation of monolayer growth kinetics of Fe2B phase during the paste-boriding process: Influence of the phase thickness,” Appl. Surf. Sci, 253, 757 – 761 (2006).

    Article  CAS  Google Scholar 

  33. M. Ortiz-Domínguez, M. Elias-Espinosa, M. Keddam, et al., “Growth kinetics and mechanical properties of Fe2B layers formed on AISI D2 steel,” Indian J. Eng. Mater. Sci., 22, 231 – 243 (2015).

    Google Scholar 

  34. L. G. Yu, K. A. Khor, and G. Sundararajan, “Boriding of mild steel using the spark plasma sintering (SPS) technique,” Surf. Coat. Technol., 157, 226 – 230 (2002).

    Article  CAS  Google Scholar 

  35. G. Kartal, O. L. Eryilmaz, G. Krumdick, et al., “Kinetics of electrochemical boriding of low carbon steel,” Appl. Surf. Sci., 257, 6928 – 6934 (2011).

    Article  CAS  Google Scholar 

  36. S. Sen, U. Sen, and C. Bindal, “An approach to kinetic study of borided steels,” Surf. Coat. Technol., 191, 274 – 285 (2005).

    Article  CAS  Google Scholar 

  37. K. Genel, I. Ozbek, and C. Bindal, “Kinetics of boriding of AISI W1 steel,” Mater. Sci. Eng. A, 347, 311 – 314 (2003).

    Article  Google Scholar 

  38. K. Genel, “Boriding kinetics of H13 steel,” Vacuum, 80, 451 – 457 (2006).

    Article  CAS  Google Scholar 

  39. I. Campos-Silva, M. Ortiz-Domínguez, C. Tapia-Quintero, et al., “Kinetics and boron diffusion in the FeB/Fe2B layers formed at the surface of borided high-alloy steel,” J. Mater. Eng. Perform., 21, 1714 – 1723 (2012).

    Article  CAS  Google Scholar 

  40. M. Keddam and M. Kulka, “A kinetic model for boriding kinetics of AISI D2 steel during the diffusion annealing process,” Protect. Met. Phys. Chem. Surf., 54, 282 – 290 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keddam.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 12, pp. 13 – 20, December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keddam, M., Kulka, M. Simulation of Boriding Kinetics of AISI D2 Steel using Two Different Approaches. Met Sci Heat Treat 61, 756–763 (2020). https://doi.org/10.1007/s11041-020-00496-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00496-2

Key words

Navigation