Skip to main content
Log in

VEGA: visual comparison of phylogenetic trees for evolutionary genome analysis (ChinaVis 2019)

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

In the field of evolutionary genome analysis, biologists seek to identify important genes or chromosome regions by comparing phylogenetic trees and analyzing the mutation at which locus might affect phenotypic traits. Unfortunately, the tree comparison and accompanying analysis are often performed manually. In this paper, we characterize the workflow of evolutionary genome analysis and present a task analysis for the fundamental questions asked by biologists during the analysis procedure. We propose two algorithms to enable quantitative tree comparison. One is to measure the differences between corresponding leaf nodes on two trees, and the other is to compute the classification inconsistency of each leaf node by comparing tree structure with a given biological classification. Configuring with the obtained difference and inconsistency, we present a visual analysis system, visual comparison of phylogenetic trees for evolutionary genome analysis, which not only enables biologists to intuitively explore trees but also identify locus which affects their traits by comparing SNP variants of selected leaf nodes. We conclude with case studies from two biologists who used our system to augment their previous manual analysis workflow and demonstrate that our system can reveal more insight.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bachmaier C, Brandes U, Schlieper B (2005) Drawing phylogenetic trees

  • Barlow T, Neville P (2001) A comparison of 2-d visualizations of hierarchies. In: IEEE symposium on information visualization. IEEE, pp 131–131

  • Bremm S, von Landesberger T, Heß M, Schreck T, Weil P, Hamacherk K (2011) Interactive visual comparison of multiple trees. In: 2011 IEEE conference on visual analytics science and technology (VAST). IEEE, pp 31–40

  • Burch M, Konevtsova N, Heinrich J, Hoeferlin M, Weiskopf D (2011) Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE Trans Vis Comput Graph 17(12):2440–2448

    Article  Google Scholar 

  • Chia J-M, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44(7):803–807

    Article  Google Scholar 

  • Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC, Mooney TB, Callaway MB, Dooling D, Mardis ER et al (2012) Music: identifying mutational significance in cancer genomes. Genome Res 22(8):1589–1598

    Article  Google Scholar 

  • Ethan C, Jianjiong G, Ugur D, Gross Benjamin E, Sumer Selcuk Onur, Aksoy Bülent Arman, Jacobsen Anders, Byrne Caitlin J, Heuer Michael L, Larsson Erik et al (2012) The cbio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data

  • Ferstay JA, Nielsen CB, Munzner T (2013) Variant view: visualizing sequence variants in their gene context. IEEE Trans Vis Comput Graph 19(12):2546–2555

    Article  Google Scholar 

  • Fiume M, Williams V, Brook A, Brudno M (2010) Savant: genome browser for high-throughput sequencing data. Bioinformatics 26(16):1938–1944

    Article  Google Scholar 

  • Graham M, Kennedy J (2010) A survey of multiple tree visualisation. Inf Vis 9(4):235–252

    Article  Google Scholar 

  • Guerra-Gómez JA, Pack ML, Plaisant C, Shneiderman B (2013) Visualizing change over time using dynamic hierarchies: Treeversity2 and the stemview. IEEE Trans Vis Comput Graph 19(12):2566–2575

    Article  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at ucsc. Genome Res 12(6):996–1006

    Article  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

    Article  Google Scholar 

  • Li Z-K, Zhang F (2013) Rice breeding in the post-genomics era: from concept to practice. Curr Opin Plant Biol 16(2):261–269

    Article  Google Scholar 

  • Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311(5769):1936–1939

    Article  Google Scholar 

  • Li R, Chang Y, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J (2009) Soap2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing data. Genome Res 20(9):1297–1303

    Article  Google Scholar 

  • Munzner T, Guimbretière F, Tasiran S, Zhang L, Zhou Y (2003) Treejuxtaposer: scalable tree comparison using focus+ context with guaranteed visibility. In: ACM transactions on graphics (TOG), vol 22. ACM, pp 453–462

  • Nielsen CB, Cantor M, Dubchak I, Gordon D, Wang T (2010) Visualizing genomes: techniques and challenges. Nat Methods 7(3s):S5

    Article  Google Scholar 

  • Nucleic acid notation. http://en.wikipedia.org/wiki/Nucleic_acid_notation

  • Parr CS, Lee B, Campbell D, Bederson BB (2004) Visualizations for taxonomic and phylogenetic trees. Bioinformatics 20:2997–3004

    Article  Google Scholar 

  • Penny D, Hendy MD, Steel MA (1992) Progress with methods for constructing evolutionary trees. Trends Ecol Evol 7(3):73–79

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) Darwin software

  • Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Xingfang G et al (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45(12):1510

    Article  Google Scholar 

  • Robinson O, Dylus D, Dessimoz C (2016) Phylo.io: interactive viewing and comparison of large phylogenetic trees on the web. Mol Biol Evol 33(8):2163–2166

    Article  Google Scholar 

  • Rubin C-J, Zody MC, Eriksson J, Meadows JRS, Sherwood E, Webster MT, Jiang L, Ingman M, Sharpe T, Ka S et al (2010) Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464(7288):587

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    Google Scholar 

  • Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (cucumis sativus) and melon (c. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci 107(32):14269–14273

    Article  Google Scholar 

  • Shneiderman B (1998) Tree visualization with tree-maps: a 2-d space-filling approach. Technical report

  • Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192

    Article  Google Scholar 

  • Von Landesberger T, Kuijper A, Schreck T, Kohlhammer J, van Wijk JJ, Fekete J-D, Fellner Dieter W (2011) Visual analysis of large graphs: state-of-the-art and future research challenges. In: Computer graphics forum, volume 30. Wiley Online Library, pp 1719–1749

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30(1):105

    Article  Google Scholar 

  • Xun X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Kui W, Hanjie W et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5):886–895

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Grants of NSFC (61772315, 61602273), Shenzhen Science and Technology Program (JSGG20170412170711532) and the Open Research Fund of Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University (BKBD-2017KF02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong Ge or Yi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, T., Lu, Y., Lu, K. et al. VEGA: visual comparison of phylogenetic trees for evolutionary genome analysis (ChinaVis 2019). J Vis 23, 523–537 (2020). https://doi.org/10.1007/s12650-020-00635-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-020-00635-0

Keywords

Navigation