Skip to main content
Log in

Theoretical study of rhodium(III)-catalyzed synthesis of benzoxepine and coumarin

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanisms of the rhodium-catalyzed cycloaddition of 2-vinylphenol with diphenylacetylene and carbon monoxide have been studied using density functional theory calculations at the B3LYP/6-31G (d, p) (Lanl2dz for Rh) level of theory. The SMD solvation model was used in MeCN solvents at M06-2X/6-311 ++ G (d, p) (Lanl2dz (f) for Rh) levels using a single-point calculation to consider the solvent effect. The calculation results show that there are two competitive reaction pathways for the cycloaddition reaction of rhodium-catalyzed synthesis of benzohexine and coumarin. Starting from the precursor reaction complex, the reaction channel is more favorable for the carbon atoms of diphenylacetylene and carbon monoxide to attack the Rh–C bond (the barriers of 9.88 and 10.01 kcal/mol) rather than attack the Rh–O bond (the barriers of 15.37 and 30.17 kcal/mol), and carbon monoxide in two different reaction channels has a greater energy difference than diphenylacetylene. The results show that the computational study of the rhodium-catalyzed cycloaddition reaction has a high catalytic activity consistent with the high yield of the experiment of Gulías et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Colby DA, Bergman RG, Ellman JA (2010) Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem Rev 110:624–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yeung CS, Dong VM (2011) Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon-hydrogen bonds. Chem Rev 111:1215–1292

    Article  CAS  PubMed  Google Scholar 

  3. Engle KM, Mei TS, Wasa M, Yu JQ (2012) Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc Chem Res 45:788–802

    Article  CAS  PubMed  Google Scholar 

  4. Wencel-Delord J, Glorius F (2013) C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat Chem 5:369–375

    Article  CAS  PubMed  Google Scholar 

  5. Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y (2015) Transition metal-catalyzed C-H bond functionalization by the use of diverse directing groups. Org Chem Front 2:1107–1295

    Article  CAS  Google Scholar 

  6. Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J (2016) Mild metal-catalyzed C-H activation: examples and concepts. Chem Soc Rev 45:2900–2936

    Article  CAS  PubMed  Google Scholar 

  7. Gulías M, Mascarenas JL (2016) Metal-catalyzed annulations through activation and cleavage of C-H bonds. Angew Chem Int Ed 55:11000–11019

    Article  CAS  Google Scholar 

  8. Sambiagio C, Schonbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnurch MA (2018) Comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 47:6603–6743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lautens M, Klute W, Tam W (1996) Transition metal-mediated cycloaddition reactions. Chem Rev 96:49–92

    Article  CAS  PubMed  Google Scholar 

  10. Lee YC, Kumar K, Waldmann H (2018) Ligand-directed divergent synthesis of carbo- and heterocyclic ring systems. Angew Chem Int Ed 57:5212–5226

    Article  CAS  Google Scholar 

  11. Hassner A (2008) Synthesis of heterocycles via cycloadditions. Springer, Berlin

    Book  Google Scholar 

  12. Grigorjeva L, Daugulis O (2015) Cobalt-promoted dimerization of aminoquinoline benzamides. Org Lett 17:1204–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang LB, Hao XQ, Zhang SK, Liu ZJ, Zheng XX, Gong JF, Niu JL, Song MP (2015) Cobalt-catalyzed C(sp2)–H alkoxylation of aromatic and olefinic carboxamides. Angew Chem Int Ed 54:272–275

    Article  CAS  Google Scholar 

  14. Vidal C, Tomas-Gamasa M, Destito P, Lopez F, Mascarenas JL (2018) Concurrent and orthogonal gold(I) and ruthenium-(II) catalysis inside living cells. Nat Commun 9:1913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhang LB, Hao XQ, Liu ZJ, Zheng XX, Zhang SK, Niu JL, Song MP (2015) Cobalt(II)-catalyzed C-H alkynylation/annulation with terminal alkynes: selective access to 3-methyleneisoindolin-1-one. Angew Chem Int Ed 54:10012–10015

    Article  CAS  Google Scholar 

  16. Li H, Yao Y, Li L (2017) Coumarins as potential antidiabetic agents. J Pharm Pharmacol 69:1253–1264

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y, Wang S, Xu X, Liu X, Yu M, Zhao S, Liu S, Qiu Y, Zhang T, Liu BF, Zhang G (2013) Synthesis and biological investigation of coumarin piperazine (piperidine) derivatives as potential multireceptor atypical antipsychotics. J Med Chem 56:4671–4690

    Article  CAS  PubMed  Google Scholar 

  18. Zhao H, Donnelly AC, Kusuma BR, Brandt GEL, Brown D, Rajewski RA, Vielhauer G, Holzbeierlein J, Cohen MS, Blagg BSJ (2011) Engineering an antibiotic to fight cancer: optimization of the novobiocin scaffold to produce anti-proliferative agents. J Med Chem 54:3839–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamaguchi Y, Nishizono N, Kobayashi D, Yoshimura T, Wada K, Oda K (2017) Evaluation of synthesized coumarin derivatives on aromatase inhibitory activity. Bioorg Med Chem Lett 27:2645–2649

    Article  CAS  PubMed  Google Scholar 

  20. Vasconcelos JF, Teixeira MM, Barbosa-Filho JM, Agra MF, Nunes XP, Giulietti AM, Ribeiro-dos-Santos R, Soares MBP (2009) Effects of umbelliferone in a murine model of allergic airway inflammation. Eur J Pharmacol 609:126–131

    Article  CAS  PubMed  Google Scholar 

  21. Liu XG, Zhang SS, Jiang CY, Wu JQ, Li Q, Wang H (2015) Cp*co(III)-catalyzed annulations of 2-alkenylphenols with CO: mild access to coumarin derivatives. Org Lett 17:5404–5407

    Article  CAS  PubMed  Google Scholar 

  22. Melliou E, Magiatis P, Mitaku S, Skaltsounis AL, Chinou E, Chinou I (2005) Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. J Nat Prod 68:78–82

    Article  CAS  PubMed  Google Scholar 

  23. Lv HN, Wang S, Zeng KW, Li J, Guo XY, Ferreira D, Zjawiony JK, Tu PF, Jiang Y (2015) Anti-inflammatory coumarin and benzocoumarin derivatives from murraya alata. J Nat Prod 78:279–285

    Article  CAS  PubMed  Google Scholar 

  24. Gulías M, Marcos-Atanes D, Mascarenas JL, Font M (2019) Practical, large-scale preparation of benzoxepines and coumarins through rhodium(III)-catalyzed C-H activation/annulation reactions. Org Process Res Dev 23:1669–1673

    Article  CAS  Google Scholar 

  25. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.01. Gaussian, Inc., Wallingford

    Google Scholar 

  27. Stephens PJ, Devlin FJ, Chabalowski CF (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  28. Ren Y, Lin ZY (2020) Theoretical studies on Rh-catalyzed cycloisomerization of homopropargylallene-alkynes through C (sp3)–C(sp) bond activation. ACS Catal 10:1828–1837

    Article  CAS  Google Scholar 

  29. Zhang JQ, Xie HJ, Zhu HJ, Zhang SZ, Lonka MR, Zou HB (2019) Chameleon-like behavior of the directing group in the Rh(III)-catalyzed regioselective C-H amidation of indole: an experimental and computational study. ACS Catal 9:10233–10244

    Article  CAS  Google Scholar 

  30. Brahim H, Haddad B, Brahim S, Guendouzi A (2017) DFT/TDDFT computational study of the structural, electronic and optical properties of rhodium (III) and iridium (III) complexes based on tris-picolinate bidentate ligands. J Mol Model 23:344

    Article  PubMed  CAS  Google Scholar 

  31. Domański MA, Wolański Ł, Szarek P, Grochala W (2020) The high covalence of metal-ligand bonds as stability limiting factor: the case of Rh(IX)O4+ and Rh(IX)NO3. J Mol Model 26:52

    Article  PubMed  CAS  Google Scholar 

  32. Zhang XH, Li SS, Wei XL, Lei Y (2018) Computational study of Ru-catalyzed cycloisomerization of 2-alkynylanilides. J Mol Model 24:162

    Article  PubMed  CAS  Google Scholar 

  33. Zhang XH, Wu X, Lei Y (2019) Theoretical study on reaction mechanism of synthesis of iridium complexes having cyclometalated acyclic diaminocarbene ancillary ligands. J Mol Model 25:262

    Article  CAS  Google Scholar 

  34. Zhang XH, Geng ZY (2016) Mechanism of the gold(I)-catalyzed synthesis of imidazo-pyrimidines and imidazo-pyrazines via [3 + 2] dipolar cycloaddition: a DFT study. RSC Adv 6:62099–62108

    Article  CAS  Google Scholar 

  35. Zhang XH, Jiang LP, Li SS, Wang KT (2017) A theoretical study on platinum-catalyzed cycloisomerization of 2-ethynyl-1-ferrocenylbenzene. Comput Theor Chem 1115:56–62

    Article  CAS  Google Scholar 

  36. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  37. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  38. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–297

    Article  CAS  Google Scholar 

  39. Roy LE, Hay PJ, Martin RL (2008) Revised basis sets for the LANL effective core potentials. J Chem Theory Comput 4:1029–1031

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  41. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  42. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the reviewers for their invaluable suggestions.

Funding

This work was supported by the Outstanding Youth Research Program of Lanzhou University of Arts and Sciences (2018JCQN008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinghui Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wu, X., Li, S. et al. Theoretical study of rhodium(III)-catalyzed synthesis of benzoxepine and coumarin. J Mol Model 26, 143 (2020). https://doi.org/10.1007/s00894-020-04409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04409-1

Keywords

Navigation