Skip to main content
Log in

Structural optimization and parametric analysis of SOI optical slot waveguides

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Slot waveguides based on silicon-on-insulator dielectric material are investigated theoretically for structural optimization with the aim of attaining the maximum light confinement with the minimum mode footprint inside the slot region. The effects of various geometrical parameters on the field confinement factor and effective mode area are examined to determine the performance of dielectric vertical- and horizontal-slot waveguides. Parametric analysis for the optimization of the slot waveguides is carried out using the finite element method (FEM). The theoretical and FEM-based electric/magnetic field components and Poynting vector profiles are compared for both types of slot waveguide. Furthermore, a cross-slot structure is proposed based on the optimized parameters found for the vertical- and horizontal-slot waveguides, to guide both quasi-transverse electric (TE) and quasi-transverse magnetic (TM) modes simultaneously. For the cross-slot waveguide with optimized dimensions, the numerical simulation predicts a confinement factor of ~ 34.16% with an effective mode area of ~ 0.438 μm2 in the quasi-TE mode and ~ 30.12% with 0.480 μm2 in the quasi-TM mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Dutta, N.K., Zhang, X.: Optoelectronic Devices. World Scientific, Singapore (2018)

    Book  Google Scholar 

  2. Ang, T.Y.L., Png, C.E., Lim, S.T., Ong, J.R.: Challenges and solutions for high-speed integrated silicon photonics. In: Silicon Photonics XIV (2019) https://doi.org/10.1117/12.2509470

  3. Shen, Y., et al.: Silicon photonics for extreme scale systems. J. Light. Technol. 37(2), 245–259 (2019). https://doi.org/10.1109/JLT.2019.2897365

    Article  Google Scholar 

  4. Reed, G.T., Knights, A.P.: Silicon Photonics. Wiley, Chichester (2004)

    Book  Google Scholar 

  5. Densmore, A., et al.: A silicon-on-insulator photonic wire based evanescent field sensor. IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006). https://doi.org/10.1109/LPT.2006.887374

    Article  Google Scholar 

  6. Zou, Y., Chakravarty, S., Chung, C.-J., Xu, X., Chen, R.T.: Mid-infrared silicon photonic waveguides and devices. Photon. Res. 6(4), 254 (2018). https://doi.org/10.1364/PRJ.6.000254

    Article  Google Scholar 

  7. Kaminow, I.P.: Optical integrated circuits: a personal perspective. J. Light. Technol. 26(9), 994–1004 (2008). https://doi.org/10.1109/JLT.2008.922149

    Article  Google Scholar 

  8. L. Vivien and L. Pavesi, Eds., Handbook of Silicon Photonics. CRC Press, 2016

  9. Mashanovich, G.Z., et al.: Silicon photonic waveguides and devices for near- and mid-IR applications. IEEE J. Sel. Top. Quant. Electron. 21(4), 407–418 (2015). https://doi.org/10.1109/JSTQE.2014.2381469

    Article  Google Scholar 

  10. Wangüemert-Pérez, J.G., et al.: Subwavelength structures for silicon photonics biosensing. Opt. Laser Technol. 109, 437–448 (2019). https://doi.org/10.1016/j.optlastec.2018.07.071

    Article  Google Scholar 

  11. Bohn, M., Magill, P., Hochberg, M., Scordo, D., Novack, A., Streshinsky, M.: Next-generation silicon photonic interconnect solutions. In: Optical Fiber Communication Conference (OFC) (2019) https://doi.org/10.1364/ofc.2019.m3j.3

  12. Song, X., Li, R., Mi, G., Suo, J., Zhang, Z., Li, Y.: Optoelectronic integrated circuits for growing datacenters: challenge, strategy, and evolution. In: Smart Photonic and Optoelectronic Integrated Circuits XXI (2019) https://doi.org/10.1117/12.2507919

  13. Paul, D.J.: Silicon photonics: a bright future? Electron. Lett. 45(12), 582 (2009). https://doi.org/10.1049/el.2009.1271

    Article  Google Scholar 

  14. Koch, T.L., Koren, U.: Semiconductor photonic integrated circuits. IEEE J. Quant. Electron. 27(3), 641–653 (1991). https://doi.org/10.1109/3.81373

    Article  Google Scholar 

  15. Marpaung, D., Yao, J., Capmany, J.: Integrated microwave photonics. Nat. Photon. 13(2), 80–90 (2019). https://doi.org/10.1038/s41566-018-0310-5

    Article  Google Scholar 

  16. Bogaerts, W., et al.: Basic structures for photonic integrated circuits in silicon-on-insulator. Opt. Express 12(8), 1583 (2004). https://doi.org/10.1364/OPEX.12.001583

    Article  Google Scholar 

  17. K. Okamoto, Fundamentals of Optical Waveguides. Elsevier, 2006

  18. Almeida, V.R., Xu, Q., Barrios, C.A., Lipson, M.: Guiding and confining light in void nanostructure. Opt. Lett. 29(11), 1209 (2004). https://doi.org/10.1364/OL.29.001209

    Article  Google Scholar 

  19. Steglich, P.: Silicon-on-insulator slot waveguides: theory and applications in electro-optics and optical sensing. In: Emerging Waveguide Technology, InTech (2018)

  20. Xu, Q., Almeida, V.R., Panepucci, R.R., Lipson, M.: Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29(14), 1626 (2004). https://doi.org/10.1364/OL.29.001626

    Article  Google Scholar 

  21. Priye, V., Malviya, N., Mickelson, A.: Analytical predictions for nonlinear optical processes in silicon slot waveguides. J. Comput. Electron. 17(2), 857–865 (2018). https://doi.org/10.1007/s10825-018-1150-8

    Article  Google Scholar 

  22. Dar, T., Homola, J., Rahman, B.M.A., Rajarajan, M.: Label-free slot-waveguide biosensor for the detection of DNA hybridization. Appl. Opt. 51(34), 8195 (2012). https://doi.org/10.1364/AO.51.008195

    Article  Google Scholar 

  23. Azuelos, P., et al.: High sensitivity optical biosensor based on polymer materials and using the Vernier effect. Opt. Express 25(24), 30799 (2017). https://doi.org/10.1364/OE.25.030799

    Article  Google Scholar 

  24. An, L., Liu, H., Sun, Q., Huang, N., Wang, Z.: Wavelength conversion in highly nonlinear silicon–organic hybrid slot waveguides. Appl. Opt. 53(22), 4886 (2014). https://doi.org/10.1364/AO.53.004886

    Article  Google Scholar 

  25. Agrawal, G.P.: Fiber-Optic Communication Systems. Wiley, New York (2010)

    Book  Google Scholar 

  26. Viphavakit, C., Komodromos, M., Themistos, C., Mohammed, W.S., Kalli, K., Azizur-Rahman, B.M.: Optimization of a horizontal slot waveguide biosensor to detect DNA hybridization. Appl. Opt. (2015). https://doi.org/10.1364/ao.54.004881

    Article  Google Scholar 

  27. Sun, R., et al.: Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm. Opt. Express 15(26), 17967 (2007). https://doi.org/10.1364/OE.15.017967

    Article  Google Scholar 

  28. Kumari, B., Varshney, R.K., Pal, B.P.: Design of chip scale silicon rib slot waveguide for sub-ppm detection of N2O gas at mid-IR band. Sensors Actuat. B Chem. 255, 3409–3416 (2018). https://doi.org/10.1016/j.snb.2017.09.170

    Article  Google Scholar 

  29. Barrios, C.A., Lipson, M.: Electrically driven silicon resonant light emitting device based on slot-waveguide. Opt. Express 13(25), 10092 (2005). https://doi.org/10.1364/OPEX.13.010092

    Article  Google Scholar 

  30. Rukhlenko, I.D., Premaratne, M., Agrawal, G.P.: Effective mode area and its optimization in silicon-nanocrystal waveguides. Opt. Lett. 37(12), 2295 (2012). https://doi.org/10.1364/OL.37.002295

    Article  Google Scholar 

  31. Arti Agrawal, B. M. A. R.: Finite Element Modeling Methods for Photonics. Artech House (2013)

  32. Singh, R.R., Malviya, N., Priye, V.: Parametric analysis of silicon nanowire optical rectangular waveguide sensor. IEEE Photon. Technol. Lett. 28(24), 2889–2892 (2016). https://doi.org/10.1109/LPT.2016.2624501

    Article  Google Scholar 

  33. Khanna, A., Säynätjoki, A., Tervonen, A., Honkanen, S.: Control of optical mode properties in cross-slot waveguides. Appl. Opt. 48(34), 6547 (2009). https://doi.org/10.1364/AO.48.006547

    Article  Google Scholar 

  34. Robinson, J.T., Preston, K., Painter, O., Lipson, M.: First-principle derivation of gain in high-index-contrast waveguides. Opt. Express 16(21), 16659 (2008). https://doi.org/10.1364/OE.16.016659

    Article  Google Scholar 

  35. Sanchis, P., Blasco, J., Martinez, A., Marti, J.: Design of silicon-based slot waveguide configurations for optimum nonlinear performance. J. Light. Technol. 25(5), 1298–1305 (2007). https://doi.org/10.1109/JLT.2007.893909

    Article  Google Scholar 

  36. Westerveld, W.J., Leinders, S.M., van Dongen, K.W.A., Urbach, H.P., Yousefi, M.: Extension of Marcatili’s analytical approach for rectangular silicon optical waveguides. J. Light. Technol. 30(14), 2388–2401 (2012). https://doi.org/10.1109/JLT.2012.2199464

    Article  Google Scholar 

  37. Wang, Q., Farrell, G., Freir, T.: Effective index method for planar lightwave circuits containing directional couplers. Opt. Commun. 259(1), 133–136 (2006). https://doi.org/10.1016/j.optcom.2005.08.054

    Article  Google Scholar 

  38. Gehlot, K., Sharma, A.: Approximate analysis of planar photonic bandgap waveguides: a simple semi-analytical method. Opt. Quant. Electron. 46(3), 455–464 (2014). https://doi.org/10.1007/s11082-014-9873-7

    Article  Google Scholar 

  39. Lusse, P., Stuwe, P., Schule, J., Unger, H.-G.: Analysis of vectorial mode fields in optical waveguides by a new finite difference method. J. Light. Technol. 12(3), 487–494 (1994). https://doi.org/10.1109/50.285331

    Article  Google Scholar 

  40. Rahman, B., Davies, J.: Finite-element solution of integrated optical waveguides. J. Light. Technol. 2(5), 682–688 (1984). https://doi.org/10.1109/JLT.1984.1073669

    Article  Google Scholar 

  41. Chung, Y., Dagli, N.: An assessment of finite difference beam propagation method. IEEE J. Quant. Electron. 26(8), 1335–1339 (1990). https://doi.org/10.1109/3.59679

    Article  Google Scholar 

  42. Yang, Z., Xu, Z., Lu, D., Zhu, D., Li, P.: Simulation of optical waveguides with FDTD method. In: Proceedings of SPIE—The International Society for Optical Engineering (2001). https://doi.org/10.1117/12.444528

  43. Hong, J., Huang, W., Makino, T.: On the transfer matrix method for distributed-feedback waveguide devices. J. Light. Technol. 10(12), 1860–1868 (1992). https://doi.org/10.1109/50.202840

    Article  Google Scholar 

  44. Pollock, C.R., Lipson, M.: Integrated Photonics. Springer, Boston, MA (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Raj Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.R. Structural optimization and parametric analysis of SOI optical slot waveguides. J Comput Electron 19, 825–839 (2020). https://doi.org/10.1007/s10825-020-01473-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01473-x

Keywords

Navigation