Skip to main content
Log in

A kernel method for learning constitutive relation in data-driven computational elasticity

  • Original Paper
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

For numerical simulation of elastic structures, data-driven computational approaches attempt to use a data set of material responses, without resorting to conventional modeling of the material constitutive equation. In a material data set in the stress–strain space, the data points are considered to lie on or near a low-dimensional manifold, rather distribute ubiquitously in the space. This paper presents a kernel method for extracting this manifold. We formulate a regularized least-squares problem for learning a manifold, and show that its optimal solution corresponds to an eigenvector of a real symmetric matrix. Therefore, the method requires only simple computational task, and is easy to implement. We also give a description how to use the obtained solution in static equilibrium analysis of an elastic structure. Numerical experiments on two-dimensional continua are performed to demonstrate effectiveness and robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. See Remark 4 in Sect. 5.2.

  2. Main source codes, as well as data sets, used in this section are available online at https://github.com/ykanno22/data_driven_kernel_manifold/.

  3. Therefore, the assertion “[i]n the linear elastic behavior the application of the just described technique results, as expected, in a flat manifold of dimension two” made in [23, section 2] is questionable.

  4. From a practical point of view, it seems to be unrealistic to suppose that millions data points of material experiments are available for a single material.

  5. The value of k for kNN was determined based on preliminary numerical experiments.

  6. In this example, any value of \(\varepsilon ^{(l+1)}\) satisfies the compatibility relation.

  7. This seems to be natural, because the reference solution assumes that all the Gauss evaluation points have the common Young’s modulus and Poisson’s ratio, while Young’s modulus and Poisson’s ratio of the data points used in the proposed method are different from each other.

  8. This large variance of the method using the local regression may possibly be mitigated if we use the local robust regression like Kanno [26].

References

  1. Ayensa-Jiménez, J., Doweidar, M.H., Sanz-Herrera, J.A., Doblaré, M.: A new reliability-based data-driven approach for noisy experimental data with physical constraints. Comput. Methods. Appl. Mech. Eng. 328, 752–774 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Banimahd, M., Yasrobi, S.S., Woodward, P.K.: Artificial neural network for stress-strain behavior of sandy soils: knowledge based verification. Comput. Geotech. 32, 377–386 (2005)

    Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    MATH  Google Scholar 

  4. Bessa, M.A., Bostanabad, R., Liu, Z., Hu, A., Apley, D.W., Brinson, C., Chen, W., Liu, W.K.: A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput. Methods Appl. Mech. Eng. 320, 633–667 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  6. Bock, F.E., Aydin, R.C., Cyron, C.J., Huber, N., Kalidindi, S.R., Klusemann, B.: A review of the application of machine learning and data mining approaches in continuum materials mechanics. Front. Mater. 6, 110 (2019)

    Google Scholar 

  7. Clément, A., Soize, C., Yvonnet, J.: Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis. Int. J. Numer. Methods Eng. 91, 799–824 (2012)

    Google Scholar 

  8. Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Arch. Ration. Mech. Anal. 229, 79–123 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Crespo, J., Latorre, M., Montáns, F.J.: WYPIWYG hyperelasticity for isotropic, compressible materials. Comput. Mech. 59, 73–92 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Crespo, J., Montáns, F.J.: Function-refresh algorithms for determining the stored energy density of nonlinear elastic orthotropic materials directly from experimental data. Int. J. Non-Linear Mech. 107, 16–33 (2018)

    Google Scholar 

  11. Dalémat, M., Coret, M., Leygue, A., Verron, E.: Measuring stress field without constitutive equation. Mech. Mater. 136, 103087 (2019)

    Google Scholar 

  12. De Rosa, E., Latorre, M., Montáns, F.J.: Capturing anisotropic constitutive models with WYPiWYG hyperelasticity; and on consistency with the infinitesimal theory at all deformation levels. Int. J. Non-Linear Mech. 96, 75–92 (2017)

    Google Scholar 

  13. Donoho, D.L., Grimes, C.: Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. USA 100, 5591–5596 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Eggersmann, R., Kirchdoerfer, T., Reese, S., Stainier, L., Ortiz, M.: Model-free data-driven inelasticity. Comput. Methods Appl. Mech. Eng. 350, 81–99 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Ghaboussi, J., Sidarta, D.E.: New nested adaptive neural networks (NANN) for constitutive modeling. Comput. Geotech. 22, 29–52 (1998)

    Google Scholar 

  16. Ghnatios, C., Alfaro, I., González, D., Chinesta, F., Cueto, E.: Data-driven GENERIC modeling of poroviscoelastic materials. Entropy 21, 1165 (2019)

    MathSciNet  Google Scholar 

  17. González, D., Chinesta, F., Cueto, E.: Thermodynamically consistent data-driven computational mechanics. Contin. Mech. Thermodyn. 31, 239–253 (2019)

    MathSciNet  Google Scholar 

  18. González, D., Chinesta, F., Cueto, E.: Learning corrections for hyperelastic models from data. Front. Mater. 6, 14 (2019)

    Google Scholar 

  19. Hashash, Y.M.A., Jung, S., Ghaboussi, J.: Numerical implementation of a neural network based material model in finite element analysis. Int. J. Numer. Methods Eng. 59, 989–1005 (2004)

    MATH  Google Scholar 

  20. He, Q., Chen, J.-S.: A physics-constrained data-driven approach based on locally convex reconstruction for noisy database. Comput. Methods Appl. Mech. Eng. 363, 112791 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009)

    MATH  Google Scholar 

  22. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  23. Ibañez, R., Abisset-Chavanne, E., Aguado, J.V., Gonzalez, D., Cueto, E., Chinesta, F.: A manifold learning approach to data-driven computational elasticity and inelasticity. Arch. Comput. Methods Eng. 25, 47–57 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Ibáñez, R., Abisset-Chavanne, E., González, D., Duval, J.-L., Cueto, E., Chinesta, F.: Hybrid constitutive modeling: data-driven learning of corrections to plasticity models. Int. J. Mater. Form. 12, 717–725 (2019)

    Google Scholar 

  25. Ibañez, R., Borzacchiello, D., Aguado, J.V., Abisset-Chavanne, E., Cueto, E., Ladeveze, P., Chinesta, F.: Data-driven non-linear elasticity: constitutive manifold construction and problem discretization. Comput. Mech. 60, 813–826 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Kanno, Y.: Simple heuristic for data-driven computational elasticity with material data involving noise and outliers: a local robust regression approach. Jpn. J. Ind. Appl. Math. 35, 1085–1101 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Kanno, Y.: Mixed-integer programming formulation of a data-driven solver in computational elasticity. Optim. Lett. 13, 1505–1514 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Kanno, Y.: Dimensionality reduction enhances data-driven reliability-based design optimizer. J. Adv. Mech. Des. Syst. Manuf. 14, 19–00200 (2020)

    Google Scholar 

  29. Khennane, A.: Introduction to Finite Element Analysis Using MATLAB and Abaqus. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  30. Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 304, 81–101 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Kirchdoerfer, T., Ortiz, M.: Data driven computing with noisy material data sets. Comput. Methods Appl. Mech. Eng. 326, 622–641 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Kirchdoerfer, T., Ortiz, M.: Data-driven computing in dynamics. Int. J. Numer. Methods Eng. 113, 1697–1710 (2018)

    MathSciNet  Google Scholar 

  33. Korzeniowski, T.F., Weinberg, K.: A comparison of stochastic and data-driven FEM approaches to problems with insufficient material data. Comput. Methods Appl. Mech. Eng. 350, 554–570 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Ladevèze, P., Néron, D., Gerbaud, P.-W.: Data-driven computation for history-dependent materials. Comptes Rendus Mécanique 347, 831–844 (2019)

    Google Scholar 

  35. Latorre, M., Montáns, F.J.: Experimental data reduction for hyperelasticity. Comput. Struct. (to appear). https://doi.org/10.1016/j.compstruc.2018.02.011

  36. Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Methods Eng. 104, 1061–1084 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Lefik, M., Schrefler, B.A.: Artificial neural network as an incremental non-linear constitutive model for a finite element code. Comput. Methods Appl. Mech. Eng. 192, 3265–3283 (2003)

    MATH  Google Scholar 

  38. Lei, X., Liu, C., Du, Z., Zhang, W., Guo, X.: Machine learning-driven real-time topology optimization under moving morphable component-based framework. J. Appl. Mech. (ASME) 86, 011004 (2019)

    Google Scholar 

  39. Le Quilliec, G., Raghavan, B., Breitkopf, P.: A manifold learning-based reduced order model for springback shape characterization and optimization in sheet metal forming. Comput. Methods Appl. Mech. Eng. 285, 621–638 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Leygue, A., Coret, M., Réthoré, J., Stainier, L., Verron, E.: Data-based derivation of material response. Comput. Methods Appl. Mech. Eng. 331, 184–196 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Leygue, A., Seghir, R., Réthoré, J., Coret, M., Verron, E., Stainier, L.: Non-parametric material state field extraction from full field measurements. Comput. Mech. 64, 501–509 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Lu, X., Giovanis, D.G., Yvonnet, J., Papadopoulos, V., Detrez, F., Bai, J.: A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites. Comput. Mech. 64, 307–321 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Man, H., Furukawa, T.: Neural network constitutive modelling for non-linear characterization of anisotropic materials. Int. J. Numer. Methods Eng. 85, 939–957 (2011)

    MATH  Google Scholar 

  44. Millán, D., Arroyo, M.: Nonlinear manifold learning for model reduction in finite elastodynamics. Comput. Methods Appl. Mech. Eng. 261–262, 118–131 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Millán, D., Rosolen, A., Arroyo, M.: Nonlinear manifold learning for meshfree finite deformation thin-shell analysis. Int. J. Numer. Methods Eng. 93, 685–713 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Montáns, F.J., Chinesta, F., Gómez-Bombarelli, R., Kutz, J.N.: Data-driven modeling and learning in science and engineering. Comptes Rendus Mécanique 347, 845–855 (2019)

    Google Scholar 

  47. Moya, B., Gonzalez, D., Alfaro, I., Chinesta, F., Cueto, E.: Learning slosh dynamics bymeans of data. Comput. Mech. 64, 511–523 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Nguyen, L.T.K., Keip, M.-A.: A data-driven approach to nonlinear elasticity. Comput. Struct. 194, 97–115 (2018)

    Google Scholar 

  49. Raghavan, B., Xia, L., Breitkopf, P., Rassineux, A., Villon, P.: Towards simultaneous reduction of both input and output spaces for interactive simulation-based structural design. Comput. Methods Appl. Mech. Eng. 265, 174–185 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Google Scholar 

  51. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  52. Stainier, L., Leygue, A., Ortiz, M.: Model-free data-driven methods in mechanics: material data identification and solvers. Comput. Mech. 64, 381–393 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Tang, S., Zhang, G., Yang, H., Li, Y., Liu, W.K., Guo, X.: MAP123: a data-driven approach to use 1D data for 3D nonlinear elastic materials modeling. Comput. Methods Appl. Mech. Eng. 357, 112587 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Temizer, İ., Wriggers, P.: An adaptive method for homogenization in orthotropic nonlinear elasticity. Comput. Methods Appl. Mech. Eng. 196, 3409–3423 (2007)

    MathSciNet  MATH  Google Scholar 

  55. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Google Scholar 

  56. Terada, K., Kato, J., Hirayama, N., Inugai, T., Yamamoto, K.: A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput. Mech. 52, 1199–1219 (2013)

    MathSciNet  MATH  Google Scholar 

  57. Wang, K., Sun, W.C., Du, Q.: A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation. Comput. Mech. 64, 467–499 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Yamasaki, S., Yaji, K., Fujita, K.: Knowledge discovery in databases for determining formulation in topology optimization. Struct. Multidiscip. Optim. 59, 595–611 (2019)

    MathSciNet  Google Scholar 

  59. Yang, H., Guo, X., Tang, S., Liu, W.K.: Derivation of heterogeneous material laws via data-driven principal component expansions. Comput. Mech. 64, 365–379 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J. Sci. Comput. 26, 313–338 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by JST CREST Grant no. JPMJCR1911, Japan and the research grant from the Obayashi Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanno, Y. A kernel method for learning constitutive relation in data-driven computational elasticity. Japan J. Indust. Appl. Math. 38, 39–77 (2021). https://doi.org/10.1007/s13160-020-00423-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-020-00423-1

Keywords

Mathematics Subject Classification

Navigation