Skip to main content

Advertisement

Log in

Biomass-derived multi-heteroatom-doped carbon materials for high-performance solid-state symmetric supercapacitors with superior long-term cycling stability

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to fabricate high-performance supercapacitors with desirable energy density and excellent cycling stability, this work aimed to synthesize biomass-derived carbon materials with great electrochemical performance, especially with superior long-term cycling stability, via a facile and simple process. Herein, we have fabricated three kinds of biomass-derived multi-heteroatom-doped carbon materials, using laver, soybean milk and soybean milk (Ag+) as the precursors, labeled as LC, SC and Ag-SC, respectively. The three heteroatom-doped carbon materials possessed extremely high cycling performance; after cycling for 50,000 times, the specific capacitances of LC and SC could maintain 119.8% and 96.0%, and the specific capacitance of Ag-SC could maintain 131.1% after cycling for 40,000 times. Additionally, the energy densities of the corresponding solid-state symmetric supercapacitors were 9.5, 6.2 and 6.9 Wh kg−1 at the power density of about 900 W kg−1, respectively, and the specific capacitances could retain 141.5%, 128.9% and 102.2% after 50,000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y, Qu Q, Gao S, Tang G, Liu K, He S, Huang C (2019) Biomass derived carbon as binder-free electrode materials for supercapacitors. Carbon 155:706–726

    CAS  Google Scholar 

  2. Zhou S, Zhou L, Zhang Y, Sun J, Wen J, Yuan Y (2019) Upgrading earth-abundant biomass into three-dimensional carbon materials for energy and environmental applications. J Mater Chem A 7:4217–4229

    CAS  Google Scholar 

  3. Ouyang T, Cheng K, Yang F, Zhou L, Zhu K, Ye K, Wang G, Cao D (2017) From biomass with irregular structures to 1D carbon nanobelts: a stripping and cutting strategy to fabricate high performance supercapacitor materials. J Mater Chem A 5:14551–14561

    CAS  Google Scholar 

  4. Zhang YZ, Wang Y, Cheng T, Yao LQ, Li X, Lai WY, Huang W (2019) Printed supercapacitors: materials, printing and applications. Chem Soc Rev 48:3229–3264

    CAS  PubMed  Google Scholar 

  5. Mohamed SG, Hussain I, Shim JJ (2018) One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10:6620–6628

    CAS  PubMed  Google Scholar 

  6. Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10:538–545

    CAS  Google Scholar 

  7. Chen J, Wei H, Chen H, Yao W, Lin H, Han S (2018) N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors. Electrochim Acta 271:49–57

    CAS  Google Scholar 

  8. Guo J, Wu D, Wang T, Ma Y (2019) P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor. Appl Surf Sci 475:56–66

    CAS  Google Scholar 

  9. Wan L, Li X, Li N, Xie M, Du C, Zhang Y, Chen J (2019) Multi-heteroatom-doped hierarchical porous carbon derived from chestnut shell with superior performance in supercapacitors. J Alloys Compd 790:760–771

    CAS  Google Scholar 

  10. Choi JH, Lee C, Cho S, Moon GD, Kim B, Chang H, Jang HD (2018) High capacitance and energy density supercapacitor based on biomass-derived activated carbons with reduced graphene oxide binder. Carbon 132:16–24

    CAS  Google Scholar 

  11. Niu J, Shao R, Liang J, Dou M, Li Z, Huang Y, Wang F (2017) Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy 36:322–330

    CAS  Google Scholar 

  12. Anjali J, Jose VK, Lee JM (2019) Carbon-based hydrogels: synthesis and their recent energy applications. J Mater Chem A 7:15491–15518

    CAS  Google Scholar 

  13. Gopalakrishnan A, Kong CY, Badhulik S (2019) Scalable, large-area synthesis of heteroatom-doped few-layer graphene-like microporous carbon nanosheets from biomass for high-capacitance supercapacitors. New J Chem 43:1186–1194

    CAS  Google Scholar 

  14. Deng Y, Ji Y, Wu H, Chen F (2019) Enhanced electrochemical performance and high voltage window for supercapacitor based on multi-heteroatom modified porous carbon materials. Chem Commun 55:1486–1489

    CAS  Google Scholar 

  15. Lu H, Zhao XS (2017) Biomass-derived carbon electrode materials for supercapacitors. Sustain Energy Fuels 1:1265–1281

    CAS  Google Scholar 

  16. Shan D, Yang J, Liu W, Yan J, Fan Z (2016) Biomass-derived three-dimensional honeycomb-like hierarchical structured carbon for ultrahigh-energy-density asymmetric supercapacitors. J Mater Chem A 4:13589–13602

    CAS  Google Scholar 

  17. Liu Y, Huang B, Lin X, Xie Z (2017) Biomass-derived hierarchical porous carbons: boosting energy density of supercapacitors via ionothermal approach. J Mater Chem A 5:13009–13018

    CAS  Google Scholar 

  18. Chang C, Li M, Wang H, Wang S, Liu X, Liu H, Li L (2019) A novel fabrication strategy of doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitor. J Mater Chem A 7:19939–19949

    CAS  Google Scholar 

  19. Wang J, Nie P, Ding B, Hao X, Dong S, Dou H, Zhang X (2017) Biomass derived carbon for energy storage device. J Mater Chem A 5:2411–2428

    CAS  Google Scholar 

  20. Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen CM (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7:16028–16045

    CAS  Google Scholar 

  21. Deng J, Li M, Wang Y (2016) Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem 18:4824–4854

    CAS  Google Scholar 

  22. Wang Z, Shen D, Wu C, Gu S (2018) State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem 20:5031–5057

    CAS  Google Scholar 

  23. Ma F, Wan J, Wu G, Zhao H (2015) Highly porous carbon microflakes derived from catkins for high-performance supercapacitors. RSC Adv 5:44416–44422

    CAS  Google Scholar 

  24. Ma F, Song S, Wu G, Ma D, Geng W, Wan J (2015) Facile self-template large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3:18154–18162

    Google Scholar 

  25. Fu M, Chen W, Ding J, Zhu X, Liu Q (2019) Biomass waste derived multi-hierarchical porous carbon combined with CoFe2O4 as advanced electrode materials for supercapacitors. J Alloys Compd 782:952–960

    CAS  Google Scholar 

  26. Mao C, Liu S, Pang L, Sun Q, Liu Y, Xu M, Lu Z (2016) Ultrathin MnO2 nanosheets grown on fungal conidium-derived hollow carbon spheres as supercapacitor electrodes. RSC Adv 6:5184–5191

    CAS  Google Scholar 

  27. Zhang K, Liu M, Zhang T, Min X, Wang Z, Chai L, Shi Y (2019) High-performance supercapacitor energy storage using carbon material derived from lignin by bacterial activation before carbonization. J Mater Chem A 7:26838–26848

  28. Peng C, Lang J, Xu S, Wang X (2014) Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitor. RSC Adv 4:54662–54667

    CAS  Google Scholar 

  29. Peng L, Liang Y, Dong H, Hu H, Zhao X, Cai Y, Xiao Y, Liu Y, Zheng M (2018) Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors. J Power Sources 377:151–160

    CAS  Google Scholar 

  30. Gao Y, Zhai Z, Huang K, Zhang Y (2017) Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors. New J Chem 41:11456–11470

    CAS  Google Scholar 

  31. Fan YM, Song WL, Li X, Fan LZ (2017) Assembly of graphene aerogels into the 3D biomass-derived carbon frameworks on conductive substrates for flexible supercapacitors. Carbon 111:658–666

    CAS  Google Scholar 

  32. He D, Zhao W, Li P, Liu Z, Wu H, Liu L, Han K, Liu L, Wan Q, Butt FK, Qu X (2019) Bifunctional biomass-derived 3D nitrogen-doped porous carbon for oxygen reduction reaction and solid-state supercapacitor. Appl Surf Sci 465:303–312

    CAS  Google Scholar 

  33. Yang L, Huang MH, Guan XH, Guan X, Wang G (2019) Facile design and synthesis of nickle-molybdenum oxide/sulfide composites with robust microsphere structure for high-performance supercapacitors. Chem Eng J 364:462–474

    CAS  Google Scholar 

  34. Guan XH, Huang MH, Yang L, Guan X, Wang G (2019) Facial design and synthesis of CoSx/Ni-co LDH nanocages with rhombic dodecahedral structure for high-performance asymmetric supercapacitors. Chem Eng J 372:151–162

    CAS  Google Scholar 

  35. Xu X, Sun P, He W, Yang H, Cao R, Yin J, Wang C (2018) Hedgehog-inspired nanostructures for hydrogel-based all-solid-state hybrid supercapacitors with excellent flexibility and electrochemical performances. Nanoscale 10:19004–19013

    PubMed  Google Scholar 

  36. Sun Z, Ge H, Zhu S, Cao X, Guo X, Xiu Z, Huang Z, Li H, Ma T, Song X (2019) Versatile template-free construction of hollow nanostructured CeO2 induced by functionalized carbon materials. J Mater Chem A 7:12008–12017

    CAS  Google Scholar 

  37. Sankar S, Ahmed ATA, Inamdar AI, Im H, Im YB, Lee Y, Kim DY, Lee S (2019) Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors. Mater Des 169:107688

    CAS  Google Scholar 

  38. Cao Y, Xie L, Sun G, Su F, Kong QQ, Li F, Ma W, Shi J, Jiang D, Lu C, Chen CM (2018) Hollow carbon microtubes from kapok fiber: structural evolution and energy storage performance. Sustain Energy Fuels 2:455–465

    CAS  Google Scholar 

  39. Zhu Y, Chen M, Zhang Y, Zhao W, Wang C (2018) A biomass-derived nitrogen-doped porous carbon for high-energy supercapacitor. Carbon 140:404–412

    CAS  Google Scholar 

  40. Su XL, Chen JR, Zheng GP, Yang JH, Guan XX, Liu P, Zheng XC (2018) Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications. Appl Surf Sci 436:327–336

    CAS  Google Scholar 

  41. Yang S, Wang S, Liu X, Li L (2019) Biomass derived interconnected hierarchical micro-meso-macro-porous carbon with ultrahigh capacitance for supercapacitors. Carbon 147:540–549

    CAS  Google Scholar 

  42. Liu X, Ma C, Li J, Zielinska B, Kalenczuk RJ, Chen X, Chu PK, Tang T, Mijowska E (2019) Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. J Power Sources 412:1–9

    CAS  Google Scholar 

  43. Xiao PW, Meng Q, Zhao L, Li JJ, Wei Z, Han BH (2017) Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption. Mater Des 129:164–172

    CAS  Google Scholar 

  44. Niu J, Liu M, Xu F, Zhang Z, Dou M, Wang F (2018) Synchronously boosting gravimetric and volumetric performance: biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors. Carbon 140:664–672

    CAS  Google Scholar 

  45. Xia L, Huang H, Fan Z, Hu D, Zhang D, Khan AS, Usman M, Pan L (2019) Hierarchical macro−/meso−/microporous oxygen-doped carbon derived from sodium alginate: a cost-effective biomass material for binder-free supercapacitors. Mater Des 182:108048

    CAS  Google Scholar 

  46. Zhou C, Wang D, Li A, Pan E, Liu H, Chen X, Jia M, Song H (2020) Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries. Chem Eng J 380:122457

    CAS  Google Scholar 

  47. Hao E, Liu W, Liu S, Zhang Y, Wang H, Chen S, Cheng F, Zhao S, Yang H (2017) Rich sulfur doping porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage. J Mater Chem A 5:2204–2214

    CAS  Google Scholar 

  48. Feng P, Wang W, Wang K, Cheng S, Jiang K (2019) A high-performance carbon with sulfur doped between interlayers and its sodium storage mechanism as anode material for sodium ion batteries. J Alloys Compd 795:223–232

    CAS  Google Scholar 

  49. Zhu QH, Chen Z, Tang LN, Zhong Y, Zhao XF, Zhang LZ, Li JH (2019) K and halogen binary-doped graphitic carbon nitride (g-C3N4) toward enhanced visible light hydrogen evolution. Int J Hydrog Energ 44:27704–27712

    CAS  Google Scholar 

  50. Zhu B, Liu B, Qu C, Zhang H, Guo W, Liang Z, Chen F, Zou R (2018) Tailoring biomass-derived carbon for high-performance supercapacitor from controllably cultivated algae microspheres. J Mater Chem A 6:1523–1530

    CAS  Google Scholar 

  51. Li X, Zhu G, Xiao L, Liu Y, Ji Z, Shen X, Kong L, Shah SA (2019) Loading of Ag on Fe-Co-S/N-doped carbon nanocomposite to achieve improved electrocatalytic activity for oxygen evolution reaction. J Alloys Compd 773:40–49

    CAS  Google Scholar 

  52. Han XW, Bi S, Zhang W, Yang Z (2019) One-step fabrication of highly dispersed Ag nanoparticles decorated N-doped reduced graphene oxide heterogeneous nanostructure for the catalytic reduction of 4-nitrophenol. Colloids Surf, A 574:69–77

    CAS  Google Scholar 

  53. She P, Li J, Bao H, Xu X, Hong Z (2019) Green synthesis of Ag nanoparticles decorated phosphorus doped g-C3N4 with enhanced visible-light-driven bactericidal activity. J Photochem Photobiol, A 384:112028

    CAS  Google Scholar 

  54. Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2014) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27:1117–1123

    PubMed  Google Scholar 

  55. Zhu L, Peh CKN, Zhu T, Lim YF, Ho GWW (2017) Bi-functional 2D-on-2D MoO3 nanobelt/Ni(OH)2 nanosheets for supercapacitor-driven electrochromic energy storage. J Mater Chem A 5:8343–8351

    CAS  Google Scholar 

  56. Liu M, Zhang K, Si M, Wang H, Chai L, Shi Y (2019) Three-dimensional carbon nanosheets derived from micro-morphologically regulated biomass for ultrahigh-performance supercapacitors. Carbon 153:707–716

    CAS  Google Scholar 

  57. Ma F, Ma D, Wu G, Geng W, Shao J, Song S, Wan J, Qiu J (2016) Construction of 3D nanostructure hierarchical porous graphitic carbon by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors. Chem Commun 52:6673–6676

    CAS  Google Scholar 

  58. Ma C, Li Y, Shi J, Song Y, Liu L (2014) High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching. Chem Eng J 249:216–225

    CAS  Google Scholar 

  59. Wang S, Pei B, Zhao X, Dryfe RAW (2013) Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2:530–536

    CAS  Google Scholar 

  60. Li Z, Wu D, Liang Y, Fu R, Matyjaszewski K (2014) Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties. J Am Chem Soc 136:4805–4808

    CAS  PubMed  Google Scholar 

  61. Gao D, Wang L, Yu J, Wei Q, Wang C, Liu G (2014) Preparation and characterization of porous carbon based nanocomposite for supercapacitor. Fiber Polym 15:1236–1241

    CAS  Google Scholar 

  62. Liu B, Yang M, Chen H, Liu Y, Yang D, Li H (2018) Graphene-like porous carbon nanosheets derived from salvia splendens for high-rate performance supercapacitors. J Power Sources 397:1–10

    CAS  Google Scholar 

  63. Le T, Yang Y, Huang Z, Kang F (2015) Preparation of microporous carbon nanofibers from polyimide by using polyvinyl pyrrolidone as template and their capacitive performance. J Power Sources 278:683–692

    CAS  Google Scholar 

  64. He X, Li R, Qiu J, Xie K, Ling P, Yu M, Zhang X, Zheng M (2012) Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon 50:4911–4921

    CAS  Google Scholar 

  65. Lai C, Zhou Z, Zhang L, Wang X, Zhou Q, Zhao Y, Wang Y, Wu X, Zhu Z, Fong H (2014) Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. J Power Sources 247:134–141

    CAS  Google Scholar 

  66. Chen LF, Zhang XD, Liang HW, Kong M, Guan QF, Chen P, Wu ZY, Yu SH (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6:7092–7102

    CAS  PubMed  Google Scholar 

Download references

Funding

This project was financially supported by the National Natural Science Foundation of China (Nos. 51972049, 51672040, 51672013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohui Guan, Xin Guan or Guangsheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 377 kb)

Fig. 8

(PNG 403 kb)

ESM 2

(TIF 13.6 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Wang, J., Wang, S. et al. Biomass-derived multi-heteroatom-doped carbon materials for high-performance solid-state symmetric supercapacitors with superior long-term cycling stability. Ionics 26, 4141–4151 (2020). https://doi.org/10.1007/s11581-020-03556-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03556-y

Keywords

Navigation