Skip to main content

Advertisement

Log in

Encapsulated SnSe in carbon nanofibers as anode of sodium ion batteries with improved properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

SnSe is commonly used as anode material for sodium ion batteries (SIBs) because of its high theoretical sodium storage capacity (780 mAh/g). However, low electrical conductivity and serious volume expansion during the processes of sodiation/desodiation lead to poor cyclic stability. In this paper, a new synthesis strategy based on electrospinning was developed for encapsulated SnSe nanoparticles in carbon nanofibers (CNFs) to improve the structural and cyclic stability. The significant feature of this method is that selenium (Se) powder is directly added into electrospinning solution during annealing treatment to form SnSe nanoparticles encapsulated in CNFs instead of using Se powder during the thermal treatment process. SnSe carbon nanofibers-1 (SnSe@CNFs-1) anode material exhibits the discharge capacities of 326 mAh/g at 0.1 A/g after 100 cycles and 249.4 mAh/g at 1 A/g after 900 cycles at room temperature (25 °C). It still exhibits stable electrochemical performance at low temperature (0 °C) after 100 cycles of 267 mAh/g at 0.1 A/g. This design not only improves the rate of electron transmission but also prevents SnSe nanoparticles from agglomerating and buffering the large volume changes of electrode material during sodiation/desodiation processes. This strategy also helps to alleviate pulverization of anode material during the recycling process and improve the cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang W, Jiang B, Qian C, Lv F, Feng J, Zhou J, Wang K, Yang C, Yang Y, Guo S (2018) Pistachio-Shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv Mater 30(30):1801812

    Google Scholar 

  2. Ravanchi MT, Sahebdelfar S, Zangeneh FT (2011) Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions. Front Chem Sci Eng 5(2):173–178

    CAS  Google Scholar 

  3. Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613

    CAS  PubMed  Google Scholar 

  4. Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C (2017) Pipe-wire TiO2–Sn@ carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett 17(6):3830–3836

    CAS  PubMed  Google Scholar 

  5. Shen Q, Jiang P, He H, Chen C, Liu Y, Zhang M (2019) Encapsulation of MoSe2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery-supercapacitor hybrid devices. Nanoscale 11:13511–13520

    CAS  Google Scholar 

  6. Jiang W, Wang W, Liu L, Wang H, Xu Z, Li F, Fu H, Lv H, Chen L, Kang Y (2019) Sandwich-like Sn/SnO2@ Graphene anode composite assembled by fortissimo penetration of γ-ray and interlamellar limitation of graphene oxide. J Alloys Compd 779:856–862

    CAS  Google Scholar 

  7. Cai Y, Wang H-E, Zhao X, Huang F, Wang C, Deng Z, Li Y, Cao G, Su B-L (2017) Walnut-like porous core/shell TiO2 with hybridized phases enabling fast and stable lithium storage. ACS Appl Mater Interfaces 9(12):10652–10663. https://doi.org/10.1021/acsami.6b16498

    Article  CAS  PubMed  Google Scholar 

  8. Zhao X, Cai W, Yang Y, Song X, Neale Z, Wang H-E, Sui J, Cao G (2018) MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 47:224–234

    CAS  Google Scholar 

  9. Wang H-E, Zhao X, Li X, Wang Z, Liu C, Lu Z, Zhang W, Cao G (2017) rGO/SnS2/TiO2 heterostructured composite with dual-confinement for enhanced lithium-ion storage. J Mater Chem A 5(47):25056–25063

    CAS  Google Scholar 

  10. Xiang Y, Chen Z, Chen C, Wang T, Zhang M (2017) Design and synthesis of Cr2O3@ C@ G composites with yolk-shell structure for Li+ storage. J Alloys Compd 724:406–412

    CAS  Google Scholar 

  11. Vaalma C, Buchholz D, Weil M, Passerini S (2018) A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 3(4):18013

    Google Scholar 

  12. Huang Z, Chen Z, Ding S, Chen C, Zhang M (2018) Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ionics 324:267–275

    CAS  Google Scholar 

  13. He P, Yan M, Zhang G, Sun R, Chen L, An Q, Mai L (2017) Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater 7(11):1601920

    Google Scholar 

  14. He H, Chen C, Chen Z, Li P, Ding S, Cai M, Zhang M (2019) Ni3S2@S-carbon nanotubes synthesized using NiS2 as sulfur source and precursor for high performance sodium-ion half/full cells. Science China Materials:1–13

  15. Chen Z, Wang T, Zhang M, Cao G (2017) A phase-separation route to synthesize porous CNTs with excellent stability for Na+ storage. Small 13(22):1604045

    Google Scholar 

  16. Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou SX (2017) Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater 29(48):1700622

    Google Scholar 

  17. Reddy M, Subba Rao G, Chowdari B (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113(7):5364–5457

    CAS  PubMed  Google Scholar 

  18. Kim Y, Kim Y, Choi A, Woo S, Mok D, Choi NS, Jung YS, Ryu JH, Oh SM, Lee KT (2014) Tin phosphide as a promising anode material for Na-ion batteries. Adv Mater 26(24):4139–4144

    CAS  PubMed  Google Scholar 

  19. Mahmood N, Zhang C, Hou Y (2013) Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small 9(8):1321–1328

    CAS  PubMed  Google Scholar 

  20. Ko YN, Choi SH, Kang YC (2016) Hollow cobalt selenide microspheres: synthesis and application as anode materials for Na-ion batteries. ACS Appl Mater Interfaces 8(10):6449–6456

    CAS  PubMed  Google Scholar 

  21. Zhang Z, Zhao X, Li J (2015) SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries. Electrochim Acta 176:1296–1301

    CAS  Google Scholar 

  22. Xue M-Z, Yao J, Cheng S-C, Fu Z-W (2006) Lithium electrochemistry of a novel SnSe thin-film anode. J Electrochem Soc 153(2):A270–A274

    CAS  Google Scholar 

  23. Zhang L, Lu L, Zhang D, Hu W, Wang N, Xu B, Li Y, Zeng H (2016) Dual-buffered SnSe@ CNFs as negative electrode with outstanding lithium storage performance. Electrochim Acta 209:423–429

    Google Scholar 

  24. Yang T, Liu Y, Zhang M (2017) Improving the electrochemical properties of Cr-SnO2 by multi-protecting method using graphene and carbon-coating. Solid State Ionics 308:1–7

    CAS  Google Scholar 

  25. Chen R, Li S, Liu J, Li Y, Ma F, Liang J, Chen X, Miao Z, Han J, Wang T (2018) Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries. Electrochim Acta 282:973–980

    CAS  Google Scholar 

  26. Mai L, Sheng J, Xu L, Tan S, Meng J (2018) One-dimensional hetero-nanostructures for rechargeable batteries. Accounts Chem Res 51(4):950–959

    CAS  Google Scholar 

  27. File PD (1987) Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data. Newton Square, PA, Card (25-1280)

  28. Datta J, Bhattacharya C, Bandyopadhyay S (2006) Synthesis and characterization of electro-crystallized Cd–Sn–Se semiconductor films for application in non-aqueous photoelectrochemical solar cells. Appl Surf Sci 252(20):7493–7502

    CAS  Google Scholar 

  29. Choi SH, Kang YC (2015) Polystyrene-templated aerosol synthesis of MoS2–amorphous carbon composite with open macropores as battery electrode. ChemSusChem 8(13):2260–2267

    CAS  PubMed  Google Scholar 

  30. Park GD, Lee J-H, Kang YC (2016) Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process. Nanoscale 8(23):11889–11896

    CAS  PubMed  Google Scholar 

  31. Tang Z, Zhao P, Ni D, Liu Y, Zhang M, Wang H, Zhang H, Gao H, Yao Z, Bu W (2018) Pyroelectric nanoplatform for NIR-II-triggered photothermal therapy with simultaneous pyroelectric dynamic therapy. Mater Horizons 5(5):946–952

    CAS  Google Scholar 

  32. Ren X, Wang J, Zhu D, Li Q, Tian W, Wang L, Zhang J, Miao L, Chu PK, Huo K (2018) Sn-C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy 54:322–330

    CAS  Google Scholar 

  33. Wang X, Fan H, Ren P (2012) UV light-assisted synthesis of coral SnO2: characterization and its enhanced photocatalytic properties. Colloids Surf A Physicochem Eng Asp 402:53–59

    CAS  Google Scholar 

  34. Liu J, Liang J, Wang C, Ma J (2019) Electrospun CoSe@ N-doped carbon nanofibers with highly capacitive Li storage. J Energy Chem 33:160–166

    Google Scholar 

  35. Xia J, Jiang K, Xie J, Guo S, Liu L, Zhang Y, Nie S, Yuan Y, Yan H, Wang X (2019) Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. Chem Eng J 359:1244–1251

    CAS  Google Scholar 

  36. Chen C, Yang Y, Tang X, Qiu R, Wang S, Cao G, Zhang M (2019) Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small 15(10):1804740

    Google Scholar 

  37. Ji L, Gu M, Shao Y, Li X, Engelhard MH, Arey BW, Wang W, Nie Z, Xiao J, Wang C (2014) Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv Mater 26(18):2901–2908

    CAS  PubMed  Google Scholar 

  38. Chen Z, Liu Y, Zhang H, Ding S, Wang T, Zhang M (2017) In-situ phase transition to form porous h-MoO3@C nanofibers with high stability for Li+/Na+ storage. Sci China-Mater 60(8):755–765

    CAS  Google Scholar 

  39. Yin D, Chen Z, Zhang M (2019) Sn-interspersed MoS2/C nanosheets with high capacity for Na+/K+ storage. J Phys Chem Solids 126:72–77

    CAS  Google Scholar 

  40. Chen Z, Yin D, Zhang M (2018) Sandwich-like MoS2@ SnO2@ C with high capacity and stability for sodium/potassium ion batteries. Small 14(17):1703818

    Google Scholar 

  41. Kim Y, Kim Y, Park Y, Jo YN, Kim Y-J, Choi N-S, Lee KT (2015) SnSe alloy as a promising anode material for Na-ion batteries. Chem Commun 51(1):50–53

    CAS  Google Scholar 

  42. Yang X, Zhang R, Chen N, Meng X, Yang P, Wang C, Zhang Y, Wei Y, Chen G, Du F (2016) Assembly of SnSe nanoparticles confined in graphene for enhanced sodium-ion storage performance. Chem-Eur J 22(4):1445–1451

    CAS  PubMed  Google Scholar 

  43. Yu Y, Gu L, Wang C, Dhanabalan A, Van Aken PA, Maier J (2009) Encapsulation of Sn@ carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem-Int Edit 48(35):6485–6489

    CAS  Google Scholar 

  44. Zhao K, Liu F, Niu C, Xu W, Dong Y, Zhang L, Xie S, Yan M, Wei Q, Zhao D (2015) Graphene oxide wrapped amorphous copper vanadium oxide with enhanced capacitive behavior for high-rate and long-life lithium-ion battery anodes. Adv Sci 2(12):1500154

    Google Scholar 

  45. Li L, Chen Z, Zhang M (2018) Mo2C embedded in S-doped carbon nanofibers for high-rate performance and long-life time Na-ion batteries. Solid State Ionics 323:151–156

    CAS  Google Scholar 

  46. Li Y, Hu Y, Q-g L (2006) Influence of discharge rate on cycling performance of lithium-ion battery. J Power Sources 30(6):488–491

    CAS  Google Scholar 

  47. Huang B, Yang J, Zou Y, Ma L, Zhou X (2014) Sonochemical synthesis of SnO2/carbon nanotubes encapsulated in graphene sheets composites for lithium ion batteries with superior electrochemical performance. Electrochim Acta 143:63–69

    CAS  Google Scholar 

  48. Lee D-S, Choi Y-H, Jeong H-D (2017) Effect of electron beam irradiation on the capacity fading of hydride-terminated silicon nanocrystal based anode materials for lithium ion batteries. J Ind Eng Chem 53:82–92

    CAS  Google Scholar 

  49. C-j L, Huang H, G-z C, Xue F-h, Camacho RAP, Dong X-l (2014) Enhanced electrochemical stability of Sn-carbon nanotube nanocapsules as lithium-ion battery anode. Electrochim Acta 144:376–382

    Google Scholar 

  50. Lindström H, Södergren S, Solbrand A, Rensmo H, Hjelm J, Hagfeldt A, Lindquist S-E (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101(39):7717–7722

    Google Scholar 

  51. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614

    CAS  Google Scholar 

Download references

Funding

This study has been supported by the National Natural Science Foundation of China (Grants 51772082, 51804106, and 51574117), China Postdoctoral Science Foundation (2017M610495, 2018T110822), Natural Science Foundation of Hunan Province (2019JJ30002, 2019JJ50061), and the Research Projects of Degree and Graduate Education Teaching Reformation in Hunan Province (JG2018B031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Cai or Ming Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 586 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Ding, S., He, H. et al. Encapsulated SnSe in carbon nanofibers as anode of sodium ion batteries with improved properties. Ionics 26, 3937–3946 (2020). https://doi.org/10.1007/s11581-019-03382-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03382-x

Keywords

Navigation