Skip to main content

Advertisement

Log in

Differences in relative air humidity affect responses to soil salinity in freshwater and salt marsh populations of the dominant grass species Phragmites australis

  • WETLAND ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Soil salinity diminishes the dominance of species and affects their distribution. Phragmites australis is a dominant ecosystem engineer with broad distribution, high intraspecific variation and great socio-economic importance. Coastal ecosystems inhabited by P. australis are threatened by salinization. Here, we investigated salinity tolerance of freshwater and salt marsh population of the species, grown under two soil salinities and in two common gardens. Salinity significantly affected the growth, biomass, leaf physiological parameters and ion concentration. Climate altered morphology and ion concentration of P. australis. In contrast to our hypothesis, the salt marsh population was not more salt tolerant than the freshwater population, and both showed a low degree of salt stress, maintaining their photosynthesis and chlorophyll concentration, and only showing small decreases in biomass and height when salt-treated. We therefore ruled out local adaptation to soil salinity. Instead, both populations acclimated by phenotypic plasticity of biomass, root: shoot ratio, stomatal conductance and ion content. The salinity tolerance strategy of both populations was ion concentration by tissue desiccation, which was most efficient in the drier climate common garden. Hence, plants utilizing tissue desiccation as salinity tolerance strategy will have an advantage in areas where climate change leads to drier air humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abràmoff, M. D., P. J. Magalhães & S. J. Ram, 2004. Image processing with ImageJ. Biophotonics International 11(7): 36–42.

    Google Scholar 

  • Achenbach, L. & H. Brix, 2014. Can differences in salinity tolerance explain the distribution of four genetically distinct lineages of Phragmites australis in the Mississippi River Delta? Hydrobiologia 737(1): 5–23.

    CAS  Google Scholar 

  • Adams, D. A., 1963. Factors influencing vascular plant zonation in North Carolina salt marshes. Ecology 44(3): 445–456.

    Google Scholar 

  • Asch, F., M. Dingkuhn, K. Dörffling & K. Miezan, 2000. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113(2): 109.

    Google Scholar 

  • Azooz, M., M. Shaddad & A. Abdel-Latef, 2004. Leaf growth and K+/Na+ ratio as an indication of the salt tolerance of three sorghum cultivars grown under salinity stress and IAA treatment. Acta Agronomica Hungarica 52(3): 287–296.

    CAS  Google Scholar 

  • Bertness, M. D., 1991. Interspecific interactions among high marsh perennials in a New-England salt-marsh. Ecology 72(1): 125–137.

    Google Scholar 

  • Bradshaw, A. D., 1965. Evolutionary significance of phenotypic plasticity in plants. Genetics 13(1): 115–155.

    Google Scholar 

  • Brix, H., 1999. The European research project on reed die-back and progression (EUREED). Limnologica 29(1): 5–10.

    Google Scholar 

  • Brix, H., S. Y. Ye, E. A. Laws, D. C. Sun, G. S. Li, X. G. Ding, H. M. Yuan, G. M. Zhao, J. Wang & S. F. Pei, 2014. Large-scale management of common reed, Phragmites australis, for paper production: a case study from the Liaohe Delta, China. Ecological Engineering 73: 760–769.

    Google Scholar 

  • Byrne, M. P. & P. A. O’Gorman, 2018. Trends in continental temperature and humidity directly linked to ocean warming. Proceedings of the National Academy of Sciences of the United States of America 115(19): 4863–4868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan, J. S., R. N. Hager, J. P. Megonigal & T. J. Mozdzer, 2015. Global change accelerates carbon assimilation by a wetland ecosystem engineer. Environmental Research Letters. https://doi.org/10.1088/1748-9326/10/11/115006.

    Article  Google Scholar 

  • Chambers, R. M., L. A. Meyerson & K. Saltonstall, 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64(3–4): 261–273.

    Google Scholar 

  • Cong, P. F., K. X. Chen, L. M. Qu & J. B. Han, 2019. Dynamic changes in the wetland landscape pattern of the Yellow River Delta from 1976 to 2016 based on satellite data. Chinese Geographical Science 29(3): 372–381.

    Google Scholar 

  • Coppi, A., L. Lastrucci, D. Cappelletti, M. Cerri, F. Ferranti, V. Ferri, B. Foggi, D. Gigante, R. Venanzoni, D. Viciani, R. Selvaggi & L. Reale, 2018. AFLP approach reveals variability in Phragmites australis: implications for its die-back and evidence for genotoxic effects. Frontiers in Plant Science 9: 386–386.

    PubMed  PubMed Central  Google Scholar 

  • Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. G. Raskin, P. Sutton & M. van den Belt, 1998. The value of ecosystem services: putting the issues in perspective. Ecological Economics 25(1): 67–72.

    Google Scholar 

  • Costanza, R., B. Fisher, K. Mulder, S. Liu & T. Christopher, 2007. Biodiversity and ecosystem services: a multi-scale empirical study of the relationship between species richness and net primary production. Ecological Economics 61(2): 478–491.

    Google Scholar 

  • Crain, C. M., 2007. Shifting nutrient limitation and eutrophication effects in marsh vegetation across estuarine salinity gradients. Estuaries and Coasts 30(1): 26–34.

    CAS  Google Scholar 

  • Cui, B., Q. Yang, Z. Yang & K. Zhang, 2009. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecological Engineering 35(7): 1090–1103.

    Google Scholar 

  • Cui, B. S., Q. A. He & Y. A. An, 2011. Community structure and abiotic determinants of salt marsh plant zonation vary across topographic gradients. Estuaries and Coasts 34(3): 459–469.

    CAS  Google Scholar 

  • Curco, A., C. Ibanez, J. W. Day & N. Prat, 2002. Net primary production and decomposition of salt marshes of the Ebre delta (Catalonia, Spain). Estuaries 25(3): 309–324.

    Google Scholar 

  • Demmig Adams, B. & W. W. Adams, 1992. Carotenoid composition in sun and shade leaves of plants with different life forms. Plant, Cell and Environment 15(4): 411–419.

    CAS  Google Scholar 

  • Eller, F., H. Skalova, J. S. Caplan, G. P. Bhattarai, M. K. Burger, J. T. Cronin, W. Y. Guo, X. Guo, E. L. G. Hazelton, K. M. Kettenring, C. Lambertini, M. K. McCormick, L. A. Meyerson, T. J. Mozdzer, P. Pysek, B. K. Sorrell, D. F. Whigham & H. Brix, 2017. Cosmopolitan species as models for ecophysiological responses to global change: the common reed Phragmites australis. Frontiers in Plant Science 8: 1833.

    PubMed  PubMed Central  Google Scholar 

  • Ellison, A. M., 2019. Foundation species, non-trophic Interactions, and the value of being common. Science 13: 254–268.

    Google Scholar 

  • Ellison, A. M., M. S. Bank, B. D. Clinton, E. A. Colburn, K. Elliott, C. R. Ford, D. R. Foster, B. D. Kloeppel, J. D. Knoepp, G. M. Lovett, J. Mohan, D. A. Orwig, N. L. Rodenhouse, W. V. Sobczak, K. A. Stinson, J. K. Stone, C. M. Swan, J. Thompson, B. Von Holle & J. R. Webster, 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3(9): 479–486.

    Google Scholar 

  • Emery, N. C., P. J. Ewanchuk & M. D. Bertness, 2001. Competition and salt-marsh plant zonation: stress tolerators may be dominant competitors. Ecology 82(9): 2471–2485.

    Google Scholar 

  • Engels, J. G. & K. Jensen, 2010. Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient. Oikos 119(4): 679–685.

    Google Scholar 

  • Fan, X., B. Pedroli, G. Liu, Q. Liu, H. Liu & L. Shu, 2012. Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degradation & Development 23(2): 175–189.

    Google Scholar 

  • Flowers, T. J. & T. D. Colmer, 2008. Salinity tolerance in halophytes. New Phytologist 179(4): 945–963.

    CAS  Google Scholar 

  • Flowers, T. J., R. Munns & T. D. Colmer, 2015. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany 115(3): 419–431.

    CAS  PubMed  Google Scholar 

  • Frankham, R., 2005. Genetics and extinction. Biological Conservation 126(2): 131–140.

    Google Scholar 

  • Gao, L. X., S. Q. Tang, L. Q. Zhuge, M. Nie, Z. Zhu, B. Li & J. Yang, 2012. Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China. PLoS ONE. https://doi.org/10.1371/journal.pone.0043334.

    Article  PubMed  PubMed Central  Google Scholar 

  • Graneli, W., 1984. Reed Phragmites-Australis (Cav) Trin Ex Steudel as an energy-source in Sweden. Biomass 4(3): 183–208.

    Google Scholar 

  • Guan, B., J. B. Yu, A. X. Hou, G. X. Han, G. M. Wang, F. Z. Qu, J. B. Xia & X. H. Wang, 2017. The ecological adaptability of Phragmites australis to interactive effects of water level and salt stress in the Yellow River Delta. Aquatic Ecology 51(1): 107–116.

    CAS  Google Scholar 

  • Haslam, S. M., 1973. Some aspects of the life history and autecology of Phragmites communis Trin: a review. Polskie Archiwum Hydrobiologii 20(1): 79–100.

    Google Scholar 

  • Himes-Cornell, A., L. Pendleton & P. Atiyah, 2018. Valuing ecosystem services from blue forests: a systematic review of the valuation of salt marshes, sea grass beds and mangrove forests. Ecosystem Services 30: 36–48.

    Google Scholar 

  • Jarvis, A. J. & W. J. Davies, 1998. The coupled response of stomatal conductance to photosynthesis and transpiration. Journal of Experimental Botany 49: 399–406.

    Google Scholar 

  • Kawecki, T. J. & D. Ebert, 2004. Conceptual issues in local adaptation. Ecology Letters 7(12): 1225–1241.

    Google Scholar 

  • Kiviat, E., 2013. Ecosystem services of Phragmites in North America with emphasis on habitat functions. Aob Plants 5: 1–29.

    Google Scholar 

  • Kobbing, J. F., V. Beckmann, N. Thevs, H. Peng & S. Zerbe, 2016. Investigation of a traditional reed economy (Phragmites australis) under threat: pulp and paper market, values and Netchain at Wuliangsuhai Lake, Inner Mongolia, China. Wetlands Ecology and Management 24(3): 357–371.

    Google Scholar 

  • Latzel, V. & J. Klimešova, 2010. Transgenerational plasticity in clonal plants. Evolutionary Ecology 24(6): 1537–1543.

    Google Scholar 

  • Li, B., C. Y. Li, J. Y. Liu, Q. Zhang & L. M. Duan, 2017. Decreased streamflow in the Yellow River Basin, China: Climate change or human-induced? Water. https://doi.org/10.3390/w9020116.

    Article  Google Scholar 

  • Liang, J., W. L. Xing, G. M. Zeng, X. Li, Y. H. Peng, X. D. Li, X. Gao & X. Y. He, 2018. Where will threatened migratory birds go under climate change? Implications for China’s national nature reserves. Science of the Total Environment 645: 1040–1047. https://doi.org/10.1016/j.scitotenv.2018.07.196.

    Article  CAS  Google Scholar 

  • Lissner, J., H. H. Schierup, F. A. Comin & V. Astorga, 1999. Effect of climate on the salt tolerance of two Phragmites australis populations. I. Growth, inorganic solutes, nitrogen relations and osmoregulation. Aquatic Botany 64(3–4): 317–333.

    CAS  Google Scholar 

  • Mateus, N. D., E. V. D. Ferreira, J. C. Arthur, J. C. Domec, L. Jordan-Meille, J. L. D. Goncalves & J. Lavres, 2019. The ideal percentage of K substitution by Na in Eucalyptus seedlings: evidences from leaf carbon isotopic composition, leaf gas exchanges and plant growth. Plant Physiology and Biochemistry 137: 102–112.

    Google Scholar 

  • Matimati, I., G. A. Verboom & M. D. Cramer, 2014. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. Journal of Experimental Botany 65: 159–168.

    CAS  PubMed  Google Scholar 

  • Matoh, T., N. Matsushita & E. Takahashi, 1988. Salt tolerance of the reed plant Phragmites-communis. Physiologia Plantarum 72(1): 8–14.

    Google Scholar 

  • Moore, G. E., D. M. Burdick, C. R. Peter & D. R. Keirstead, 2012. Belowground biomass of Phragmites australis in coastal marshes. Northeastern Naturalist 19(4): 611–626.

    Google Scholar 

  • Mozdzer, T. J., J. Brisson & E. L. G. Hazelton, 2013. Physiological ecology and functional traits of North American native and Eurasian introduced Phragmites australis lineages. Aob Plants. https://doi.org/10.1093/aobpla/plt048.

    Article  PubMed Central  Google Scholar 

  • Mozdzer, T. J., J. S. Caplan, R. N. Hager, C. E. Proffitt & L. A. Meyerson, 2016. Contrasting trait responses to latitudinal climate variation in two lineages of an invasive grass. Biological Invasions 18(9): 2649–2660.

    Google Scholar 

  • Mueller, P., R. N. Hager, J. E. Meschter, T. J. Mozdzer, J. A. Langley, K. Jensen & J. P. Megonigal, 2016. Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biological Invasions 18(9): 2635–2647.

    Google Scholar 

  • Munns, R. & M. Tester, 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651–681.

    CAS  PubMed  Google Scholar 

  • Munns, R., D. A. Day, W. Fricke, M. Watt, B. Arsova, B. J. Barkla, J. Bose, C. S. Byrt, Z. H. Chen, K. J. Foster, M. Gilliham, S. W. Henderson, C. L. D. Jenkins, H. J. Kronzucker, S. J. Miklavcic, D. Plett, S. J. Roy, S. Shabala, M. C. Shelden, K. L. Soole, N. L. Taylor, M. Tester, S. Wege, L. H. Wegner & S. D. Tyerman, 2019. Energy costs of salt tolerance in crop plants. New Phytologist. https://doi.org/10.1111/nph.15864.

    Article  Google Scholar 

  • Münzbergová, Z., V. Hadincová, H. Skálová, V. Vandvik & S. Bonser, 2017. Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. Journal of Ecology 105(5): 1358–1373.

    Google Scholar 

  • Neuhaus, D., H. Kühl, J. G. Kohl, P. Dörfel & T. Börner, 1993. Investigation on the genetic diversity of Phragmites stands using genomic fingerprinting. Aquatic Botany 45(4): 357–364.

    Google Scholar 

  • Pagter, M., C. Bragato, M. Malagoli & H. Brix, 2009. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Botany 90(1): 43–51.

    CAS  Google Scholar 

  • Pasternak, D., 1987. Salt tolerance and crop production - a comprehensive approach. Annual Review of Phytopathology 25: 271–291.

    Google Scholar 

  • Pennings, S. C., M. B. Grant & M. D. Bertness, 2005. Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. Journal of Ecology 93(1): 159–167.

    Google Scholar 

  • Poorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot & L. Mommer, 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193(1): 30–50.

    CAS  Google Scholar 

  • Pyšek, P., H. Skálová, J. Čuda, W. Y. Guo, J. Doležal, O. Kauzál, C. Lambertini, K. Pyšková, H. Brix & L. A. Meyerson, 2019. Physiology of a plant invasion: biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia 91(1): 51–75.

    Google Scholar 

  • Reef, R. & C. E. Lovelock, 2015. Regulation of water balance in mangroves. Annals of Botany 115(3): 385–395.

    CAS  PubMed  Google Scholar 

  • Roy, S. J., S. Negrao & M. Tester, 2014. Salt resistant crop plants. Current Opinion in Biotechnology 26: 115–124.

    CAS  PubMed  Google Scholar 

  • Saltonstall, K., 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of the United States of America 99(4): 2445–2449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snow, A. A. & S. W. Vince, 1984. Plant zonation in an Alaskan salt marsh: II. An experimental study of the role of edaphic conditions. Journal of Ecology 72(2): 669–684. https://doi.org/10.2307/2260075.

    Article  Google Scholar 

  • Stephenson, T. A. & A. Stephenson, 1949. The universal features of zonation between tide-marks on rocky coasts. Journal of Ecology 37(2): 289–305.

    Google Scholar 

  • Takahashi, R., T. Nishio, N. Ichizen & T. Takano, 2007. Salt-tolerant reed plants contain lower Na+ and higher K+ than salt-sensitive reed plants. Acta Physiologiae Plantarum 29(5): 431–438.

    CAS  Google Scholar 

  • Valladares, F., S. Matesanz, F. Guilhaumon, M. B. Araujo, L. Balaguer, M. Benito-Garzon, W. Cornwell, E. Gianoli, M. van Kleunen, D. E. Naya, A. B. Nicotra, H. Poorter & M. A. Zavala, 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters 17(11): 1351–1364.

    PubMed  Google Scholar 

  • Vasquez, E. A., E. P. Glenn, J. J. Brown, G. R. Guntenspergen & S. G. Nelson, 2005. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Marine Ecology Progress Series 298: 1–8.

    Google Scholar 

  • Wakeel, A., M. Farooq, M. Qadir & S. Schubert, 2011. Potassium substitution by sodium in plants. Critical Reviews in Plant Sciences 30(4): 401–413.

    CAS  Google Scholar 

  • Wellstein, C., P. Poschlod, A. Gohlke, S. Chelli, G. Campetella, S. Rosbakh, R. Canullo, J. Kreyling, A. Jentsch & C. Beierkuhnlein, 2017. Effects of extreme drought on specific leaf area of grassland species: Aa meta-analysis of experimental studies in temperate and sub-Mediterranean systems. Global Change Biology 23(6): 2473–2481.

    PubMed  Google Scholar 

  • White, S. D. & G. G. Ganf, 2002. A comparison of the morphology, gas space anatomy and potential for internal aeration in Phragmites australis under variable and static water regimes. Aquatic Botany 73(2): 115–127.

    Google Scholar 

  • Windham, L. & J. G. Ehrenfeld, 2003. Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecological Applications 13(4): 883–896.

    Google Scholar 

  • Xing, Y. C., C. G. Zhang, E. Y. Fan & Y. H. Zhao, 2016. Freshwater fishes of China: species richness, endemism, threatened species and conservation. Diversity and Distributions 22(3): 358–370.

    Google Scholar 

  • Yuan, Y., K. Y. Wang, D. Z. Li, Y. Pan, Y. Y. Lv, M. X. Zhao & J. J. Gao, 2013. Interspecific interactions between Phragmites australis and Spartina alterniflora along a tidal gradient in the Dongtan Wetland, Eastern China. PLoS ONE 8(1): e53843.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, K. F., L. T. Feng & S. Q. Zhang, 1999. Study on the salinity-adaptation physiology in different ecotypes of Phragmites australis in the Yellow River Delta of China: Osmotica and their contribution to the osmotic adjustment. Estuarine Coastal and Shelf Science 49: 37–42.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lele Liu and Zhenwei Xu for their technical assistance and helpful comments on the manuscript. This work was supported by the National Natural Science Foundation of China [Grant Numbers 31770361; 31970347; 31500264)]. E. Jespersen was supported by the Sino-Danish Center for Education and Research (SDC). F. Eller was funded by a grant from the Carlsberg Foundation (CF15-0330). Dr. S. Ye, L. Xie & L. Pei were funded by National Key R&D Program of China (2016YFE0109600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Guo or Weihua Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Franziska Eller, Hans Brix, Brian K. Sorrell & Carlos A. Arias / Wetland ecosystems: functions and use in a changing climate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Jespersen, E., Guo, X. et al. Differences in relative air humidity affect responses to soil salinity in freshwater and salt marsh populations of the dominant grass species Phragmites australis. Hydrobiologia 848, 3353–3369 (2021). https://doi.org/10.1007/s10750-020-04285-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04285-z

Keywords

Navigation