Skip to main content
Log in

Injectable hydrogel wound dressing based on strontium ion cross-linked starch

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Severe skin wounds cause great problems and sufferings to patients. In this study, an injectable wound dressing based on strontium ion cross-linked starch hydrogel (SSH) was developed and evaluated. The good inject-ability of SSH made it easy to be delivered onto the wound surface. The good tissue adhesiveness of SSH ensured a firm protection of the wound. Besides, SSH supported the proliferation of NIH/3T3 fibroblasts and facilitated the migration of human umbilical vein endothelial cells (HUVECs). Importantly, SSH exhibited strong antibacterial effects on Staphylococcus aureus (S. aureus), which could prevent wound infection. These results demonstrate that SSH is a promising wound dressing material for promoting wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Micallef G, Bickerdike R, Reiff C, et al. Exploring the transcriptome of Atlantic salmon (Salmo salar) skin, a major defense organ. Marine Biotechnology, 2012, 14(5): 559–569

    Article  CAS  Google Scholar 

  2. Strese H, Kuck M, Benken R, et al. Application of optical methods to characterize textile materials and their influence on the human skin. Journal of Biomedical Optics, 2011, 16(4): 046013

    Article  CAS  Google Scholar 

  3. Xu R, Luo G, Xia H, et al. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials, 2015, 40: 1–11

    Article  CAS  Google Scholar 

  4. Peck M D. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns, 2011, 37(7): 1087–1100

    Article  Google Scholar 

  5. Muhammad A A, Arulselvan P, Cheah P S, et al. Evaluation of wound healing properties of bioactive aqueous fraction from Moringa oleifera Lam on experimentally induced diabetic animal model. Drug Design, Development and Therapy, 2016, 10: 1715–1730

    Article  CAS  Google Scholar 

  6. Strassburg A, Petranowitsch J, Paetzold F, et al. Cross-linking of a hydrophilic, antimicrobial polycation toward a fast-swelling, antimicrobial superabsorber and interpenetrating hydrogel networks with long lasting antimicrobial properties. ACS Applied Materials & Interfaces, 2017, 9(42): 36573–36582

    Article  CAS  Google Scholar 

  7. Murakami K, Aoki H, Nakamura S, et al. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials, 2010, 31(1): 83–90

    Article  CAS  Google Scholar 

  8. Jayakumar R, Prabaharan M, Kumar P T S, et al. Biomaterials based on chitin and chitosan in wound dressing application. Biotechnology Advances, 2011, 29(3): 322–337

    Article  CAS  Google Scholar 

  9. Hasatsri S, Pitiratanaworanat A, Swangwit S, et al. Comparison of the morphological and physical properties of different absorbent wound dressings. Dermatology Research and Practice, 2018, 9: 9367034

    Google Scholar 

  10. Tamer T M, Valachová K, Hassan M A, et al. Chitosan/hyaluronan/edaravone membranes for anti-inflammatory wound dressing: In vitro and in vivo evaluation studies. Materials Science and Engineering C, 2018, 90: 227–235

    Article  CAS  Google Scholar 

  11. Hassiba A J, Zowalaty ME, Nasrallah G K, et al. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine, 2016, 11(6): 715–737

    Article  CAS  Google Scholar 

  12. Caló E, Khutoryanskiy V V. Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 2015, 65(SI): 252–267

    Article  CAS  Google Scholar 

  13. Kamoun E A, Kenawy E R S, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research, 2017, 8(3): 217–233

    Article  CAS  Google Scholar 

  14. Li H, Yang J, Hu X, et al. Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wounddressing. Journal of Biomedical Materials ResearchPartA, 2011, 98(1): 31–39

    Article  CAS  Google Scholar 

  15. Sung J H, Hwang M R, Kim J O, et al. Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. International Journal of Pharmaceutics, 2010, 392(1–2): 232–240

    Article  CAS  Google Scholar 

  16. Balakrishnan B, Jayakrishnan A, Kumar S, et al. Anti-bacterial properties of an in situ forming hydrogel based on oxidized alginate and gelatin loaded with gentamycin. Trends in Biomaterials & Artificial Organs, 2012, 26(3): 139–145

    Google Scholar 

  17. Gong C, Wu Q, Wang Y, et al. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials, 2013, 34(27): 6377–6387

    Article  CAS  Google Scholar 

  18. Li L, Yan B, Yang J, et al. Novel mussel-inspired injectable self-healing hydrogel with anti-biofouling property. Advanced Materials, 2015, 27(7): 1294–1299

    Article  CAS  Google Scholar 

  19. Liu H, Zhang Z, Ge J, et al. A flexible conductive hybrid elastomer for high-precision stress/strain and humidity detection. Journal of Materials Science and Technology, 2019, 35(1): 176–180

    Article  Google Scholar 

  20. Elvira C, Mano J F, San Roman J, et al. Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials, 2002, 23(9): 1955–1966

    Article  CAS  Google Scholar 

  21. Ismail H, Irani M, Ahmad Z. Starch-based hydrogels: present status and applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62(7): 411–420

    Article  CAS  Google Scholar 

  22. Zhao F, Lei B, Li X, et al. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials, 2018, 178: 36–47

    Article  CAS  Google Scholar 

  23. Gu Z P, Xie H X, Li L, et al. Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2013, 24(5): 1251–1260

    CAS  Google Scholar 

  24. Rajeswari D, Gopi D, Ramya S, et al. Investigation of anticorrosive, antibacterial and in vitro biological properties of a sulphonated poly(etheretherketone)/strontium, cerium co-substituted hydroxyapatite composite coating developed on surface treated surgical grade stainless steel for orthopedic applications. RSC Advances, 2014, 4(106): 61525–61536

    Article  CAS  Google Scholar 

  25. Gao C, Liu H, Luo Z P, et al. Modification of calcium phosphate cement with poly (γ-glutamic acid) and its strontium salt for kyphoplasty application. Materials Science and Engineering C, 2017, 80: 352–361

    Article  CAS  Google Scholar 

  26. Taggart P. Starch as an ingredient: manufacture and applications. In: Eliasson A C, ed. Starch in Food: Structure, Functions and Applications. Cambridge, UK: Woodhead Publishing Ltd., 2004, 363–392

    Chapter  Google Scholar 

  27. Lin X, Liu Y, Bai A, et al. A viscoelastic adhesive epicardial patch for treating myocardial infarction. Nature Biomedical Engineering, 2019, 3(8): 632–643

    Article  CAS  Google Scholar 

  28. Mehdizadeh M, Weng H, Gyawali D, et al. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials, 2012, 33: 7972–7983

    Article  CAS  Google Scholar 

  29. Guo J, Kim G B, Shan D, et al. Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials, 2017, 112: 275–286

    Article  CAS  Google Scholar 

  30. Liu L, Liu Y Q, Feng C, et al. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials, 2019, 192: 523–536

    Article  CAS  Google Scholar 

  31. Ciesielski W, Tomasik P. Complexes of amylose and amylopectins with multivalent metal salts. Journal of Inorganic Biochemistry, 2004, 98(12): 2039–2051

    Article  CAS  Google Scholar 

  32. Tomasik P, Schilling C H. Complexes of starch with inorganic guests. Advances in Carbohydrate Chemistry and Biochemistry, 1998, 53: 263–343

    Article  CAS  Google Scholar 

  33. Qu J, Zhao X, Liang Y, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183: 185–199

    Article  CAS  Google Scholar 

  34. Faghihnejad A, Feldman K E, Yu J, et al. Adhesion and surface interactions of a self-healing polymer with multiple hydrogenbonding groups. Advanced Functional Materials, 2014, 24(16): 2322–2333

    Article  CAS  Google Scholar 

  35. Hofman A H, van Hees I A, Yang J, et al. Bioinspired underwater adhesives by using the supramolecular toolbox. Advanced Materials, 2018, 30(19): 1704640

    Article  CAS  Google Scholar 

  36. Peak C W, Wilker J J, Schmidt G. A review on tough and sticky hydrogels. Colloid and Polymer Science, 2013, 291(9): 2031–2047

    Article  CAS  Google Scholar 

  37. Karami P, Wyss C S, Khoushabi A, et al. Composite doublenetwork hydrogels to improve adhesion on biological surfaces. ACS Applied Materials & Interfaces, 2018, 10(45): 38692–38699

    Article  CAS  Google Scholar 

  38. Martina D, Creton C, Damman P, et al. Adhesion of soft viscoelastic adhesives on periodic rough surfaces. Soft Matter, 2012, 8(19): 5350–5357

    Article  CAS  Google Scholar 

  39. Shazly T M, Artzi N, Boehning F, et al. Viscoelastic adhesive mechanics of aldehyde-mediated soft tissue sealants. Biomaterials, 2008, 29(35): 4584–4591

    Article  CAS  Google Scholar 

  40. Saidak Z, Marie P J. Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis. Pharmacology & Therapeutics, 2012, 136(2): 216–226

    Article  CAS  Google Scholar 

  41. Bikkavilli R K, Feigin M E, Malbon C C. p38 mitogen-activated protein kinase regulates canonical Wnt-β-catenin signaling by inactivation of GSK3β. Journal of Cell Science, 2008, 121(21): 3598–3607

    Article  CAS  Google Scholar 

  42. Kamath K R, Park K. Biodegradable hydrogels in drug delivery. Advanced Drug Delivery Reviews, 1993, 11(1–2): 59–84

    Article  CAS  Google Scholar 

  43. Ende N. Amylase activity in body fluids. Cancer, 1961, 14(5): 1109–1114

    Article  CAS  Google Scholar 

  44. Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circulation Research, 2007, 100(6): 782–794

    Article  CAS  Google Scholar 

  45. Gao Z X Z, Huang D Y, Li H X, et al. Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 2010, 400(1): 151–156

    Article  CAS  Google Scholar 

  46. Li S, Li L, Guo C, et al. A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: Strontium loaded silk fibroin/sodium alginate (SF/SA) blend films. International Journal of Biological Macromolecules, 2017, 104: 969–978

    Article  CAS  Google Scholar 

  47. Atiyeh B S, Costagliola M, Hayek S N, et al. Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 2007, 33(2): 139–148

    Article  Google Scholar 

  48. Konvalinka A, Errett L, Fong I W. Impact of treating Staphylococcus aureus nasal carriers on wound infections in cardiac surgery. Journal of Hospital Infection, 2006, 64(2): 162–168

    Article  CAS  Google Scholar 

  49. Guida A, Towler M R, Wall J G, et al. Preliminary work on the antibacterial effect of strontium in glass ionomer cements. Journal of Materials Science Letters, 2003, 22(20): 1401–1403

    Article  CAS  Google Scholar 

  50. Lundberg J O, Weitzberg E, Gladwin M T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery, 2008, 7(2): 156–167

    Article  CAS  Google Scholar 

  51. Ravi N D, Balu R, Kumar T S S. Strontium-substituted calcium deficient hydroxyapatite nanoparticles: synthesis, characterization, and antibacterial properties. Journal of the American Ceramic Society, 2012, 95(9): 2700–2708

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Grant Nos. 51672184, 81930070, 81622032 and 81501858), the Natural Science Research of Jiangsu Higher Education Institutions (No. 17KJA180011), the Jiangsu Innovation and Entrepreneurship Program, and the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Lin or Lei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Pan, M., Yang, H. et al. Injectable hydrogel wound dressing based on strontium ion cross-linked starch. Front. Mater. Sci. 14, 232–241 (2020). https://doi.org/10.1007/s11706-020-0508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0508-6

Keywords

Navigation