Skip to main content

Advertisement

Log in

Dry and wet miombo woodlands of south-central Africa respond differently to climate change

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

It is important to understand how species distributions will shift under climate change. While much focus has been on species tracking temperature changes in the northern hemisphere, changing precipitation patterns in tropical regions have received less attention. The aim of the study was to estimate the current distribution of wet and dry miombo woodlands of sub-Saharan Africa and to predict their distributions under different climate change scenarios. A maximum entropy method (Maxent) was used to estimate the distributions and for projections. Occurrence records of dominant tree species in each woodland were used for modeling, together with altitude, soil characteristics, and climate variables as the environmental variables. Modeling was done under all four representative concentration pathways (RCPs) and three general circulation models. Three dominant tree species were used in models of dry miombo while seven were used for wet miombo. Models estimated dry miombo to cover almost the entire known distribution of miombo woodlands while wet miombo were estimated to predominate in parts of Angola, southern Democratic Republic of Congo, Malawi, Tanzania, Zambia, and Zimbabwe. Future climate scenarios predict a drier climate in sub-Saharan Africa, and as a result, the range of dry miombo will expand. Dry miombo were predicted to expand by up to 17.3% in 2050 and 22.7% in 2070. In contrast, wet miombo were predicted to contract by up to − 28.6% in 2050 and − 41.6% in 2070. A warming climate is conducive for the proliferation of dry miombo tree species but unfavorable for wet miombo tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adhikari, D., Barik, S. K., & Upadhaya, K. (2012). Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecological Engineering, 40, 37–43.

    Google Scholar 

  • Aiello-Lammens, E. M., Boria, A. R., Radosavljevic, A., Vilela, B., & Anderson, P. R. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38, 541–545.

    Google Scholar 

  • Araujo, M., Whittaker, R., Ladle, R., & Erhard, M. (2005). Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 14, 529–538.

    Google Scholar 

  • Bitencourt, C., Rapinia, A., Damascena, L. S., & Junior, P. D. M. (2016). The worrying future of the endemic flora of a tropical mountain range under climate change. Flora, 218, 1–10.

    Google Scholar 

  • Bogawski, P., Damen, T., Nowak, M. M., Pędziwiatr, K., Wilkin, P., Mwachala, G., et al. (2019). Current and future potential distributions of three Dracaena Vand. ex L. species under two contrasting climate change scenarios in Africa. Ecology and Evolution, 9, 6833–6848.

  • Byers, R. (2001). Conserving the miombo ecoregion. Harare: WWF Southern Africa Regional Program Office.

  • Campbell, B., Frost, P., & Byron, N. (1996). Miombo woodlands and their use: overview and key issues. In B. Campbell (Ed.), The Miombo in transition: woodlands and welfare in Africa (pp. 1–5). Bogor: Center for International Forestry Research.

  • Campbell, B. M., Angelsen, A., Cunningham, A., Katerere, Y., Sitoe, A., & Wunder, S. (2007). Miombo woodlands-opportunities and barriers to sustainable forest management. Center for International Forestry Research www.cifor.org. Accessed 6 June 2019.

  • Carnaval, A. C., & Moritz, C. (2008). Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography, 35, 1187–1201.

    Google Scholar 

  • Chidumayo, E. N. (1987). Species structure in Zambian miombo woodland. Journal of Tropical Ecology, 3, 109–118.

    Google Scholar 

  • Chidumayo, E. N. (1988). A re-assessment of effects of fire on miombo regeneration in the Zambian copperbelt. Journal of Tropical Ecology, 4, 361–372.

    Google Scholar 

  • Chidumayo, E. N. (1989). Early post-felling response of Marquesia woodland to burning in the Zambian Copperbelt. Journal of Ecology, 77, 430–438.

    Google Scholar 

  • Chidumayo, E. N. (1992). Seedling ecology of two miombo woodland trees. Vegetatio, 103, 51–58.

  • Chidumayo, E. N. (1993). Zambian charcoal production and miombo woodland recovery. Energy Policy, 21, 586–597.

    Google Scholar 

  • Chidumayo, E., & Frost, P. (1996). Population biology of miombo trees. In B. Campbell (Ed.), The Miombo in transition: woodlands and welfare in Africa (pp. 59–71). Bogor: Center for International Forestry Research.

    Google Scholar 

  • Chiteculo, V., & Surovy, P. (2018). Dynamic patterns of trees species in miombo forest and management perspectives for sustainable production—case study in Huambo Province, Angola. Forests, 9, 321.

    Google Scholar 

  • Copot, O., & Tanase, C. (2017). Maxent modeling of the potential distribution of Ganoderma lucidum in north-eastern region of Romania. Journal of Plant Development, 24, 133–143.

    Google Scholar 

  • Crimmins, S. M., Dobrowski, S. Z., & Mynsberge, A. R. (2013). Evaluating ensemble forecasts of plant species distributions under climate change. Ecological Modelling, 266, 126–130.

    Google Scholar 

  • De Cauwer, V., Muys, B., Revermann, R., & Trabucco, A. (2014). Potential, realized, future distribution and environmental suitability for Pterocarpus angolensis DC in Southern Africa. Forest Ecology and Management, 315, 211–226.

    Google Scholar 

  • Development Core Team, R. (2019). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing http://www.r-project.org/.

    Google Scholar 

  • Dewees, P. A., Campbell, B. M., Katerere, Y., Sitoe, A., Cunningham, A. B., Angelsen, A., et al. (2010). Managing the miombo woodlands of southern Africa: policies, incentives and options for the rural poor. Journal of Natural Resource Policy Research, 2, 57–73.

    Google Scholar 

  • Dyderski, K. M., Paz, S., Frelich, E. L., & Jagodzinski, M. A. (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology, 24, 1150–1163.

    Google Scholar 

  • Earth System Research Laboratory. (2019). Global monitoring laboratory. https://www.esrl.noaa.gov/. Accessed 22 July 2019.

  • Eastwood, R., & Lipton, M. (2011). Demographic transition in sub-Saharan Africa: how big will the economic dividend be? Population Studies, 65, 9–35.

    Google Scholar 

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697.

    Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

    Google Scholar 

  • Elith, J., Phillips, S. J., Hastie, T., Dudık, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57.

    Google Scholar 

  • Ernst, W. (1988). Seed and seedling ecology of Brachystegia spiciformis, a predominant tree component in miombo woodlands in south central Africa. Forest Ecology and Management, 25, 195–210.

    Google Scholar 

  • Fanshawe, D. B. (1971). The vegetation of Zambia. Ministry of Rural Development. Forest Research Bulletin No. 7. Lusaka: Government Printers.

    Google Scholar 

  • Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H. T., Verelst, L., & Wiberg, D. (2008). Global agro-ecological zones assessment for agriculture. Laxenburg: FAO, IIASA.

    Google Scholar 

  • Flora Zambesiaca. (2019). Kew royal botanic gardens. apps.kew.org/efloras/. Accessed 6 June 2019

  • Fourcade, Y., Engler, O. J., Rodder, D., & Secondi, J. (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE, 9, e97122.

    Google Scholar 

  • Frost, P. (1996). The ecology of Miombo woodlands. In B. Campbell (Ed.), The Miombo in transition: woodlands and welfare in Africa (pp. 11–57). Bogor: Center for International Forestry Research.

    Google Scholar 

  • Fussmann, G. F., Loreau, M., & Abrams, P. A. (2007). Eco-evolutionary dynamics of communities and ecosystems. Functional Ecology, 21, 465–477.

    Google Scholar 

  • GBIF. (2019). GBIF occurrence download. https://doi.org/10.15468/dl.muxids, https://doi.org/10.15468/dl.dl9bwq, https://doi.org/10.15468/dl.g2xakg, https://doi.org/10.15468/dl.qokpxz, https://doi.org/10.15468/dl.vtdcer, https://doi.org/10.15468/dl.ckukzo, https://doi.org/10.15468/dl.wggwv0, https://doi.org/10.15468/dl.0mtgbd. Accessed 20 July 2019.

  • Giliba, A. R., Boon, K. E., Kayombo, J. C., Musamba, B. E., Kashindye, M. A., & Shayo, F. P. (2011). Species composition, richness and diversity in miombo woodland of Bereku Forest Reserve, Tanzania. Journal of Biodiversity, 2, 1–7.

    Google Scholar 

  • Goberville, E., Beaugrand, G., Hautekeete, N. C., Piquot, Y., & Luczak, C. (2015). Uncertainties in the projection of species distributions related to general circulation models. Ecology and Evolution, 5, 1100–1116.

    Google Scholar 

  • Goncalves, F. M. P., Revermann, R., Gomes, A. L., Aidar, M. P. M., Finckh, M., & Juergens, N. (2017). Tree species diversity and composition of miombo woodlands in south-central Angola: a chronosequence of forest recovery after shifting cultivation. International Journal of Forestry Research. https://doi.org/10.1155/2017/6202093.

  • Grundy, I. M., Campbell, B. M., & Frost, P. G. H. (1994). Spatial pattern, regeneration and growth rates of Brachystegia spiciformis and Julbernardia globiflora. Vegetatio, 115, 101–107.

    Google Scholar 

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Google Scholar 

  • Hoffmann, A. A., Rymer, D. P., Byrne, M., Ruthrof, X. K., Whinam, J., Mcgeoch, M., et al. (2019). Impacts of recent climate change on terrestrial flora and fauna: some emerging Australian examples. Austral Ecology, 44, 3–27.

    Google Scholar 

  • IPCC. (2013). Summary for policymakers. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–29). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jackson, G. (1968). The vegetation of Malawi. II. The Brachystegia woodlands X. Brachystegia with evergreen understory. The Society of Malawi Journal, 21, 11–19.

    Google Scholar 

  • Jew, K. K. E., Dougill, A. J., Sallu, S. M., O’connell, J., & Benton, T. G. (2016). Miombo woodland under threat: consequences for tree diversity and carbon storage. Forest Ecology and Management, 361, 144–153.

    Google Scholar 

  • Jew, K. K. E., Dougill, J. A., & Sallu, M. S. (2017). Tobacco cultivation as a driver of land use change and degradation in the miombo woodlands of south-west Tanzania. Land Degradation and Development, 28, 2636–2645.

    Google Scholar 

  • Jew, K. K. E., Burdekin, J. O., Dougill, J. A., & Sallu, M. S. (2019). Rapid land use change threatens provisioning ecosystem services in miombo woodlands. Natural Resources Forum, 43, 56–70.

    Google Scholar 

  • Jinga, P., & Ashley, V. M. (2018). A mountain range is a strong genetic barrier between populations of Afzelia quanzensis (pod mahogany) with low genetic diversity. Tree Genetics & Genomes, 14, 4.

    Google Scholar 

  • Jinga, P., & Ashley, V. M. (2019). Climate change threatens some miombo tree species of sub-Saharan Africa. Flora, 257, 151421.

    Google Scholar 

  • Kapinga, K., Syampungani, S., Kasubika, R., Yambayamba, M. A., & Shamaoma, H. (2018). Species-specific allometric models for estimation of the above-ground carbon stock in miombo woodlands of Copperbelt Province of Zambia. Forest Ecology and Management, 417, 184–196.

    Google Scholar 

  • Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28, 1–26.

    Google Scholar 

  • Kumar, P. (2012). Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: limitations and challenges. Biodiversity and Conservation, 21, 1251–1266.

    Google Scholar 

  • Kutsch, W. L., Merbold, L., Ziegler, W., Mukelabai, M. M., Muchinda, M., Kolle, O., et al. (2011). The charcoal trap: miombo forests and the energy needs of people. Carbon Balance and Management, 6, 5.

    CAS  Google Scholar 

  • Lamsal, P., Kumar, L., Aryal, A., & Atreya, K. (2018). Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio, 47, 697–710.

    CAS  Google Scholar 

  • Lawrence, D., Fiegna, F., Behrends, V., Bundy, G. J., Phillimore, B. A., Bell, T., et al. (2012a). Species interactions alter evolutionary responses to a novel environment. PLoS Biology, 10, e1001330.

    CAS  Google Scholar 

  • Lawrence, D. M., Oleson, K. W., Flanner, M. G., Fletcher, C. G., Lawrence, P. J., Levis, S., et al. (2012b). The CCSM4 land simulation, 1850–2005: assessment of surface climate and new capabilities. Journal of Climate, 25, 2240–2260.

    Google Scholar 

  • Lawton, R. M. (1978). A study of the dynamic ecology of Zambian vegetation. Journal of Ecology, 66, 175–198.

    Google Scholar 

  • Liu, Y., Zhou, K., Zhang, N., & Wanga, J. (2018). Maximum entropy modeling for orogenic gold prospectivity mapping in the Tangbale-Hatu belt, western Junggar, China. Ore Geology Reviews, 100, 133–147.

    Google Scholar 

  • LPWG. (2017). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon, 66, 44–77.

    Google Scholar 

  • Lupala, Z. J., Lusambo, I. L. P., Ngaga, Y. M., & Makatta, A. A. (2015). The land use and cover change in miombo woodlands under community-based forest management and its implication to climate change mitigation: a case of Southern Highlands of Tanzania. International Journal of Forestry Research. https://doi.org/10.1155/2015/459102.

  • Malaisse, F. P. (1993). The ecology of Zambezian dry evergreen forest with recommendations for conservation management. In H. Lieth & M. Lohmann (Eds.), Restoration of tropical forest ecosystems. Tasks for vegetation science, vol 30 (pp. 75–90). Dordrecht: Springer.

    Google Scholar 

  • Marti, O., Braconnot, P., Dufresne, J.-L., Bellier, J., Benshila, R., Bony, S., et al. (2010). Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dynamics, 34, 1–26.

    Google Scholar 

  • Mbatudde, M., Mwanjololo, M., Kakudidi, K. E., & Dalitz, H. (2012). Modelling the potential distribution of endangered Prunus africana (Hook.f.) Kalkm. in East Africa. African Journal of Ecology, 50, 393–403.

    Google Scholar 

  • Moura, I., Duvane, A. J., Silva, J. M., Ribeiro, N., & Ribeiro-Barros, I. A. (2018). Woody species from the Mozambican miombo woodlands: a review on their ethnomedicinal uses and pharmacological potential. Journal of Medicinal Plant Research, 12, 15–31.

    Google Scholar 

  • Munishi, K. T. P., Temu, P. C. R.-A., & Soka, G. (2011). Plant communities and tree species associations in a miombo ecosystem in the Lake Rukwa basin, southern Tanzania: implications for conservation. Journal of Ecology and the Natural Environment, 3, 63–71.

    Google Scholar 

  • Nathan, R. (2006). Long-distance dispersal of plants. Science, 313, 786–788.

    CAS  Google Scholar 

  • Nenzen, H. K., & Araujo, M. B. (2011). Choice of threshold alters projections of species range shifts under climate change. Ecological Modelling, 222, 3346–3354.

    Google Scholar 

  • Niskanen, J. K. A., Niittynen, P., Aalto, J., Väre, H., & Luoto, M. (2019). Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Diversity and Distributions, 25, 809–821.

    Google Scholar 

  • Nogues-Bravo, D., Pulido, F., Araujo, M. B., Diniz-Filho, J. A. F., Garcıa-Valdes, R., Kollmann, J., et al. (2014). Phenotypic correlates of potential range size and range filling in European trees. Perspectives in Plant Ecology, Evolution and Systematics, 16, 219–227.

    Google Scholar 

  • Okea, A. O., & Thompson, A. K. (2015). Distribution models for mountain plant species: the value of elevation. Ecological Modelling, 301, 72–77.

    Google Scholar 

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.

    Google Scholar 

  • Peterson, A. T., Papes, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography, 30, 550–560.

    Google Scholar 

  • Phillips, S. J. (2008). A brief tutorial on Maxent. AT&T Research.

  • Phillips, S. J., & Dudik, M. (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.

    Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Google Scholar 

  • Rebelo, H., Froufe, E., Ferrand, N., & Jones, G. (2012). Integrating molecular ecology and predictive modelling: implications for the conservation of the barbastelle bat (Barbastella barbastellus) in Portugal. European Journal of Wildlife Research, 58, 721–732.

    Google Scholar 

  • Revermann, R., Gomes, A. L., Gonçalves, F. M., Wallenfang, J., Hoche, T., Jürgens, N., et al. (2016). Vegetation database of the Okavango Basin. Phytocoenologia, 46, 103–104.

    Google Scholar 

  • Rosaleen, D. (2006). Global governance and environmental management: the politics of transfrontier conservation areas in southern Africa. Political Geography, 25, 89–112.

    Google Scholar 

  • Shekede, M. D., Murwira, A., Masocha, M., & Gwitira, I. (2018). Spatial distribution of Vachellia karroo in Zimbabwean savannas (southern Africa) under a changing climate. Ecological Research, 33, 1181–1191.

    Google Scholar 

  • Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S. F., et al. (2007). Putting the ‘landscape’ in landscape genetics. Heredity, 98, 128–142.

    CAS  Google Scholar 

  • Strang, R. M. (1969). Soil moisture relations under grassland and under woodland in the Rhodesian highveld. Commonwealth Forestry Review, 48, 26–40.

    Google Scholar 

  • Sullivan, L. L., Clark, T. A., Tilman, D., & Shaw, K. A. (2018). Mechanistically derived dispersal kernels explain species-level patterns of recruitment and succession. Ecology, 99, 2415–2420.

    Google Scholar 

  • Syampungani, S., Chirwa, P. W., Akinnifesi, K. F., Sileshi, G., & Ajayi, C. O. (2009). The miombo woodlands at the crossroads: potential threats, sustainable livelihoods, policy gaps and challenges. Natural Resources Forum, 33, 150–159.

    Google Scholar 

  • USGCRP. (2018). Impacts, risks, and adaptation in the United States. Fourth National Climate Assessment, Volume II, Report-in-Brief. Washington, DC: U. S. Global Change Research Program.

    Google Scholar 

  • van Proosdij, S. J. A., Sosef, S. M. M., Wieringa, J. J., & Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39, 542–552.

    Google Scholar 

  • van Vuuren, P. D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: an overview. Climatic Change, 109, 5–31.

    Google Scholar 

  • Vinceti, B., Loo, J., Gaisberger, H., van Zonneveld, J. M., Schueler, S., Konrad, H., et al. (2013). Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables. PLoS ONE, 8, e59987.

    CAS  Google Scholar 

  • Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., et al. (2011). MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4, 845–872.

    Google Scholar 

  • White, F. (1983). The vegetation of Africa. Natural Resources Research 20. Paris: UNESCO.

    Google Scholar 

  • Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., et al. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14, 763–773.

  • Zwiener, P. V., Lira-Noriega, A., Grady, J. C., Padial, A. A., & Vitule, S. R. J. (2018). Climate change as a driver of biotic homogenization of woody plants in the Atlantic forest. Global Ecology and Biogeography, 27, 298–309.

    Google Scholar 

Download references

Acknowledgments

We thank R. Revermann and M. Finckh who provided occurrence records from the Vegetation Database of the Okavango Basin. Appreciation goes to E. N. Chidumayo of the Makeni Savanna Research Project for additional occurrence records. We also thank M. V. Ashley for critical comments and improving readability.

Availability of data and material

Some tree species occurrence records are available from the Global Biodiversity Information Facility (www.gbif.org) and Tropicos (www.tropicos.org) online data portals. Environmental variables are available from the WorldClim (www.worldclim.org) and the Harmonized World Soil Database (www.fao.org) online data portals.

Funding

The work was supported by the Biological Sciences Department at Bindura University of Science Education, Zimbabwe.

Author information

Authors and Affiliations

Authors

Contributions

Percy Jinga was responsible for conception and design of the research and acquisition, analysis, and interpretation of data. Percy Jinga also drafted the article while Jason Palagi critically revised it for intellectual content.

Corresponding author

Correspondence to Percy Jinga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 76 kb)

ESM 2

(PDF 75 kb)

ESM 3

(PDF 70 kb)

ESM 4

(PDF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinga, P., Palagi, J. Dry and wet miombo woodlands of south-central Africa respond differently to climate change. Environ Monit Assess 192, 372 (2020). https://doi.org/10.1007/s10661-020-08342-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08342-x

Keywords

Navigation