Skip to main content
Log in

Energy-Efficient Ternary Arithmetic Logic Unit Design in CNTFET Technology

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This article presents the low-power ternary arithmetic logic unit (ALU) design in carbon nanotube field-effect transistor (CNFET) technology. CNFET unique characteristic of geometry-dependent threshold voltage is employed in the multi-valued logic design. The ternary logic benefit of reduced circuit overhead is exploited by embedding multiple modules within a block. The existence of symmetric literals among various single shift and dual shift operators in addition and subtraction operations results in the optimized realization of adder/subtractor modules. The proposed design is based on the notion of multiplexing either arithmetic, logical or miscellaneous operations, depending upon the status of input selection trits. The results obtained by the synopsis HSPICE simulator with the Stanford 32 nm CNFET technology illustrate that the proposed processing modules outperform their counterparts in terms of power consumption, energy consumption and device count. The proposed methodology leads to saving in power consumption and energy consumption (PDP) of 62% and 58%, respectively, on the benchmark circuit of the ALU [full adder/subtractor (FAS)]. Furthermore, for the 2-trit multiplier design, the enhanced performance at the architecture and circuit level is achieved through the optimized designs of various adder and multiplier circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.C. Balla, A. Antoniou, Low power dissipation MOS ternary logic family. IEEE J. Solid State Circuits 19(5), 739–749 (1984)

    Article  Google Scholar 

  2. N.H. Bastani, M.H. Moaiyeri, K. Navi, Carbon nanotube field effect transistor switching logic for designing efficient ternary arithmetic circuits. J. Nanoelectron. Optoelectron. 12(2), 118–129 (2017)

    Article  Google Scholar 

  3. J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—part I: model of the intrinsic channel region. IEEE Trans. Electron Device 54(12), 3186–3194 (2007)

    Article  Google Scholar 

  4. J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—part II: full device model and circuit performance benchmarking. IEEE Trans. Electron Device 54(12), 3195–3205 (2007)

    Article  Google Scholar 

  5. A. Dhande, V. Ingole, Design and implementation of 2 bit ternary ALU slice, in Proceedings of the International Conference IEEE-Science of Electronic, Technologies of Information Telecommunications, pp. 17–21 (2005)

  6. E. Dubrova, Multiple-valued logic in VLSI: challenges and opportunities, in Proceedings of Norchip, pp. 340–350 (1999)

  7. S.A. Ebrahimi, P. Keshavarzian, S. Sorouri, Low power CNTFET-based ternary full adder cell for nanoelectronics. Int. J. Soft Comput. 2(2), 291–295 (2012)

    Google Scholar 

  8. G. Hills et al., Understanding energy efficiency benefits of carbon nanotube field-effect transistors for digital VLSI. IEEE Trans. Nanotechnol. 17(6), 1259–1269 (2018)

    Article  Google Scholar 

  9. F. Jafarzadehpour, P. Keshavarzian, Low-power consumption ternary full adder based on CNTFET. IET Circuits Devices Syst. 10(5), 365–374 (2016)

    Article  Google Scholar 

  10. M.R. Khezeli, M.H. Moaiyeri, A. Jalali, Analysis of crosstalk effects for multiwalled carbon nanotube bundle interconnects in ternary logic and comparison with cu interconnects. IEEE Trans. Nanotechnol. 16(1), 107–117 (2017)

    Google Scholar 

  11. Y. Lin, J. Appenzeller, J. Knoch, P. Avouris, High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4(5), 481–489 (2005)

    Article  Google Scholar 

  12. S. Lin, Y.B. Kim, F. Lombardi, CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol. 10(2), 217–225 (2011)

    Article  Google Scholar 

  13. M.H. Moaiyeri, A. Doostaregan, K. Navi, Design of energy-efficient and robust ternary circuits for nanotechnology. IET Circuits Devices Syst. 5(4), 285–296 (2011)

    Article  MATH  Google Scholar 

  14. S.L. Murotiya, A. Gupta, Design of CNTFET based 2-bit ternary ALU for nano-electronics. Int. J. Electron. 101(9), 1244–1257 (2014)

    Article  Google Scholar 

  15. S.L. Murotiya, A. Gupta, Hardware-efficient low-power 2-bit ternary ALU design in CNTFET technology. Int. J. Electron. 103(5), 913–927 (2016)

    Google Scholar 

  16. A. Naeemi, R. Sarvari, J. D. Meindl, On-chip interconnect networks at the end of the roadmap: limits and nanotechnology opportunities, in Proceedings of the International Interconnect Technology Conference, pp. 201–203 (2006)

  17. L.M. Peng, Z. Zhang, S. Wang, Carbon nanotube electronics: recent advances. Mater. Today 17(9), 433–442 (2014)

    Article  Google Scholar 

  18. V. Prasad, A. Banerjee, D. Das, Design of ternary logic circuits using CNTFET. in International Symposium on Devices, Circuits and Systems (ISDCS) (IEEE, 2018), pp. 1–6

  19. A. Raychowdhury, K. Roy, Carbon nanotube electronics: design of high-performance and low-power digital circuits. IEEE Trans. Circuits Syst. 54(11), 2391–2401 (2007)

    Article  Google Scholar 

  20. S.K. Sahoo, G. Akhilesh, R. Sahoo, M. Muglikar, High performance ternary adder using CNTFET. IEEE Trans. Nanotechnol. 16(03), 368–374 (2017)

    Article  Google Scholar 

  21. T. Sharma, L. Kumre, CNTFET-based design of ternary arithmetic modules. Circuits Syst. Signal Process. 38(10), 4640–4666 (2019)

    Article  Google Scholar 

  22. M.M. Shulaker et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547(74), 74–78 (2017)

    Article  Google Scholar 

  23. M. Shulaker, G. Hills, N. Patil, H. Wei, H.Y. Chen, H.S. Wong, S. Mitra, Carbon nano tube computer. Nature 501, 526–535 (2013)

    Article  Google Scholar 

  24. V. Sridevi, T. Jayanthy, Minimization of CNTFET ternary combinational circuits using negation of literals technique. Arab. J. Sci. Eng. 39(6), 4875–4890 (2014)

    Article  Google Scholar 

  25. B. Srinivasu, K. Sridharan, Low-complexity multi-ternary digit multiplier design in CNTFET technology. IEEE Trans. Circuits Syst. 63(8), 753–757 (2016)

    Article  Google Scholar 

  26. B. Srinivasu, K. Sridharan, Carbon nanotube FET-based low-delay and low-power multi-digit adder designs. IET Circuits Devices Syst. 11(4), 352–384 (2017)

    Article  Google Scholar 

  27. S. Tabrizchi, A. Panahi, F. Shari, K. Navi, N. Bagherzadeh, Method for designing ternary adder cells. IET Circuits Devices Syst. 11(5), 465–470 (2017)

    Article  Google Scholar 

  28. S. Tabrizchi, H. Sharifi, F. Sharifi, K. Navi, Design of ultra low power ternary half adder and multiplier for nanotechnology. J. Nanoelectron. Optoelectron. 11(6), 730–737 (2016)

    Article  Google Scholar 

  29. G.S. Tulevski, Toward high-performance digital logic technology with carbon nanotubes. ACS Nano 8(9), 8730–8745 (2014)

    Article  Google Scholar 

  30. C. Vudadha, S.P. Parlapalli, V. Sreehari, M.B. Srinivas, in CNFET Based Ternary Magnitude Comparator in the Proceedings of International Symposium on Communications and Information Technologies (ISCIT), pp. 942–946 (2012)

  31. C. Vudadha, S.P. Parlapalli, M.B. Srinivas, Energy efficient design of CNFET-based multi-digit ternary adders. Microelectron. J. 75, 75–86 (2018)

    Article  Google Scholar 

  32. C. Wang, K. Ryu, A. Badmaev, J. Zhang, C. Zhou, Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits singaligned carbon nanotubes. ACS Nano 5, 1147–1153 (2011)

    Article  Google Scholar 

  33. D. Zhong, Y. Xie, Z. Zhang, L. Peng, Speeding up carbon nanotube integrated circuits through three dimensional architecture. Nano Res. 12(8), 1810–1816 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This publication is an outcome of the R & D work undertaken project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trapti Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, T., Kumre, L. Energy-Efficient Ternary Arithmetic Logic Unit Design in CNTFET Technology. Circuits Syst Signal Process 39, 3265–3288 (2020). https://doi.org/10.1007/s00034-019-01318-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01318-4

Keywords

Navigation