Skip to main content
Log in

Evaluation of Antibacterial Activity of Macroalgae Extracts as Adjunctive Therapy in Neonates Sepsis Induced by Klebsiella pneumoniae

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Background

The greatest challenge of the day is the rising threat of neonatal sepsis as well as antimicrobial resistance. Accordingly, attention has been especially devoted to marine macroalgae metabolites, which are known to have prominent medicinal properties with major phytoconstituents. The object of this study is to evaluate the efficacy of three different macroalgal extracts (ME) as new ingredients classes exposed against multidrug-resistant (MDR) Klebsiella pneumoniae isolated from blood specimens of neonatal sepsis, as well as to evaluate the bio-compounds present in ME using gas chromatography–mass spectrometry (GC–MS).

Materials and Methods

Out of 370 neonates, only patients with positive blood culture 110 (29.7%) were enrolled. From clinical specimens, Klebsiella pneumoniae (n = 40) were recovered and were biochemically identified. Antimicrobial susceptibilities of the selected isolates to different antimicrobials were conducted using disk diffusion methods. Antibacterial activities of different AE, Ulva fasciata, Sargassum vulgare, Corallina officinalis, were investigated using agar well diffusion method. Furthermore, the constituents of the most promising ME were detected using GC–MS analysis.

Results

Susceptibility testing showed that all K. pneumoniae isolates were MDR with a great prevalence of resistance, especially to ampicillin and amoxicillin/clavulanic acid. Methanolic extract of S. vulgare exhibited the highest antibacterial activities. GC–MS data of the selected extract revealed eleven different secondary metabolites, which were mostly composed of organic acids.

Conclusion

The methanolic extract of the marine alga S. vulgare could be a potential candidate for the natural compounds as antibacterial therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Seale, A.C.; Blenocowe, H.; Manu, A.A.; Nair, H.; Bahl, R.; Qazi, S.A.; Zaidi, A.K.; Berkley, J.A.; Cousens, S.N.; Lawn, J.E.: pSBI Investigator Group: estimates of possible severe bacterial infection in neonates in sub-Saharan Africa, South Asia, and Latin American for 2012: a systematic review and meta-analysis. Lancet Infect. Dis 14, 731–741 (2014)

    Article  Google Scholar 

  2. Wynn, J.L.: Defining neonatal sepsis. Curr. Opin. Pediatr. 28, 135–140 (2016)

    Article  Google Scholar 

  3. Hornik, C.P.; Fort, P.; Clark, R.H.; Watt, K.; Benjamin Jr., D.K.; Smith, P.B.; Manzoni, P.; Jacqz-Aigrain, E.; Kaguelidou, F.; Cohen-Wolkowiez, M.: Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum. Dev. (2012). https://doi.org/10.1016/s0378-3782(12)70019-1

    Article  Google Scholar 

  4. Qazi, S.A.; Stoll, B.J.: Neonatal sepsis: a major global public health challenge. Pediatr. Infect. Dis. J. (2009). https://doi.org/10.1097/INF.0b013e31819587a9

    Article  Google Scholar 

  5. Zakariya, B.P.; Vishnu, B.B.; Harish, B.N.; Arun, B.T.; Joseph, N.M.: Risk factors and outcome of Klebsiella pneumoniae sepsis among Newborns. Curr. Pediatr. Res. 16, 115–118 (2012)

    Google Scholar 

  6. Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D.: Early-onset neonatal sepsis. Clin. Microbiol. Rev. (2014). https://doi.org/10.1128/cmr.00031-13

    Article  Google Scholar 

  7. Dong, Y.; Speer, C.P.: Late-onset neonatalsepsis: recent developments. Arch. Dis. Child. Fetal Neonatal Ed. 100, 257–263 (2015)

    Article  Google Scholar 

  8. Sheikh, H.; El-Naggar, A.; Al-Sobahi, D.: Evaluation of Antimycotic Activity of Extracts of Marine Algae Collected from Red Sea Coast, Jeddah. Saudi Arabia. J. Biosci Med. 6, 51–68 (2018)

    Google Scholar 

  9. Poojary, M.M.; Barba, F.J.; Aliakbarian, B.; Donsi, F.; Pataro, G.; Dias, D.A.; Juliano, P.: Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Mar. Drugs. (2016). https://doi.org/10.3390/md14110214

    Article  Google Scholar 

  10. Pérez, M.J.; Falqué, E.; Domínguez, H.: Antimicrobial action of compounds from marine seaweed. Mar. Drugs. (2016). https://doi.org/10.3390/md14030052

    Article  Google Scholar 

  11. Singh, R.P.; Kumari, P.; Reddy, C.R.: Antimicrobial compounds from seaweeds-associated bacteria and fungi. Appl. Microbiol. Biotechnol. 99, 1571–1586 (2015)

    Article  Google Scholar 

  12. Roohinejad, S.; Koubaa, M.; Barba, F.J.; Saljoughian, S.; Amid, M.; Greiner, R.: Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res. Int. (2017). https://doi.org/10.1016/j.foodres

    Article  Google Scholar 

  13. Nova, N.S.; Uddin, M.D.; Ahmed, T.: Comparative study of the antibacterial activity of seaweed (Sargassum muticm) and freshwater weed (Spirodela polyrrhiza). Bacterial Empire 2, 80–85 (2019)

    Article  Google Scholar 

  14. Aleem, A.A.: The marine Algae of Alexandria, Egypt. In: Aleem AA (Ed.), Faculty of science, University of Alexandria, Egypt (1993)

  15. Jha, B.; Reddy, C.R.K.; Thakur, M.C.; Rao, M.U.: Seaweeds of India. The Diversity and Distribution of Seaweeds of the Gujarat Coast. Springer, London (2009)

    Book  Google Scholar 

  16. Guiry, M.D.; Guiry, G.M.: Algae Base. World-wide electronic publication, National University of Ireland, Galway. (2018) http://www.algaebase.org

  17. Patra, J.K.; Rath, S.K.; Jena, K.B.; Rathod, V.K.; Thatoi, H.: Evaluation of antioxidant and antimicrobial activity of seaweed (Sargassum sp.) extract: a study on inhibition of Glutathione-S transferase activity. Turk. J. Biol. 32, 119–125 (2008)

    Google Scholar 

  18. Roy, S.; Gaind, R.; Chellani, H.; Mohanty, S.; Datta, S.; Singh, A.K.; Basu, S.: Neonatal septicaemia caused by diverse clones of Klebsiella pneumonia and Escherichia coli harbouring blaCTX-M-15. Indian J. Med. Res. 137, 791–799 (2013)

    Google Scholar 

  19. CLSI. Performance Standards for Antimicrobial Susceptibility Tests. 13th ed. CLSI standard M02. Wayne, PA: Clinical and Laboratory Standards Institute (2018)

  20. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters, version 10.0 (2020)

  21. Holder, I.A.; Boyce, S.T.: Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns 20, 426–429 (1994)

    Article  Google Scholar 

  22. Rahman, M.; Kühn, I.; Rahman, M.; Olsson-Liljequist, B.; Mölby, R.: Evaluation of a scanner- assisted colorimetric MIC method for susceptibility testing of Gram-negative fermentative bacteria. Appl. Environ. Microbiol. 70, 2398–2403 (2004)

    Article  Google Scholar 

  23. Awoniyi, D.O.; Udo, S.J.; Oguntibeju, O.O.: An epidemiological survey of neonatal sepsis in a hospital in Western Nigeria. Afr. J. Microbiol. Res. 3, 385–389 (2009)

    Google Scholar 

  24. Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D.: Early-onset neonatal sepsis. Clin. Microbiol. Rev. 27, 21–47 (2014)

    Article  Google Scholar 

  25. Lamba, M.; Sharma, R.; Sharma, D.; Choudhary, M.; Maheshwari, R.K.: Bacteriological spectrum and antimicrobial susceptibility pattern of neonatal septicaemia in a tertiary care hospital of North India. J. Matern. Fetal Neonatal Med. 29, 3993–3998 (2016)

    Article  Google Scholar 

  26. Muley, V.A.; Ghadage, D.P.; Bhore, A.V.: Bacteriological profile of neonatal septicemia in a tertiary care hospital from western India. J. Global Infect. Dis. 7, 75–77 (2015)

    Article  Google Scholar 

  27. Thakur, S.; Thakur, K.; Sood, A.; Chaudhary, S.: Bacteriological profile and antibiotic sensitivity pattern of neonatal septicaemia in a rural tertiary care hospital in North India. Indian J. Med. Microbiol. 34, 67–71 (2016)

    Article  Google Scholar 

  28. Aletayeb, S.M.H.; Khosravi, A.D.; Dehdashtian, M.; Kompani, F.; Mortazavi, S.M.; Aramesh, M.R.: Identification of bacterial agents and antimicrobial susceptibility of neonatal sepsis: a 54-month study in a tertiary hospital. Afr. J. Microbiol. Res. 5, 528–531 (2011)

    Google Scholar 

  29. Kumar, G.D.; Ramachandran, V.G.; Gupta, P.: Bacteiological analysis of blood culture isolates from neonates in a Tertiary Care Hospital in India. J. Health Popul. Nutr. 20, 343–347 (2002)

    Google Scholar 

  30. World Health Organization: Neonatal and Perinatal Mortality: Country, Regional and Global Estimates. WHO, Geneva (2006)

    Google Scholar 

  31. Lim, N.L.; Wong, Y.H.; Boo, N.Y.; Kasim, M.S.; Chor, C.Y.: Bacteraemic infections in a neonatal intensive care unit: a nine months survey. Med. J. Malaysia 50, 59–63 (1995)

    Google Scholar 

  32. Versporten, A.; Bielicki, J.; Drapier, N.; Sharland, M.; Goossens, H.; ARPEC project group: The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: developing hospital-quality indicators of antibiotic prescribing for children. J. Antimicrob. Chemother. 71, 1106–1117 (2016)

    Article  Google Scholar 

  33. Obiero, C.W.; Seale, A.C.; Berkley, J.A.: Empiric treatment of neonatal sepsis in developing countries. Pediatr. Infect. Dis. J. 34, 659–661 (2015)

    Article  Google Scholar 

  34. WHO. World Health Organization, Managing possible serious bacterial infection in young infants when referral is not possible (2015)

  35. Fuchs, A.; Bielicki, J.; Mathur, S.; Sharland, M.R.; Van Den Anker, J.N.: Antibiotic Use for Sepsis in Neonates and Children: 2016 Evidence Update (2017)

  36. Radhika, D.; Veerabahu, C.; Priya, R.: Antibacterial activity of some selected seaweeds from the Gulf of Mannar coast, South India. Asian J. Pharma. Clin. Res. 5, 89–90 (2012)

    Google Scholar 

  37. El Shafay, S.M.; Ali, S.S.; El-Sheekh, M.: Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt. J. Aquat. Res. 42, 65–74 (2016)

    Article  Google Scholar 

  38. Martins, R.M.; Nedel, F.; Guimarães, V.B.S.; da Silva, A.F.; Colepicolo, P.; de Pereira, C.M.P.; Lund, R.G.: Macroalgae extracts from antarctica have antimicrobial and anticancer potential. Front. Microbiol. (2018). https://doi.org/10.3389/fmicb.2018.00412

    Article  Google Scholar 

  39. Manivannan, K.; Karthikai Devi, G.; Anatharaman, P.; Balasubramanian, T.: Antimicrobial potential of selected brown seaweeds from Vedalai coastal waters, Gulf of Mannar. Asian Pac. J. Trop. Biomed. 1, 114–120 (2011)

    Article  Google Scholar 

  40. Yuan, Y.V.: Marine algal constituents. In: Barrow, C.; Shahidi, F. (eds.) Marine nutraceuticals and functional foods, pp. 259–296. CRC, Boca Raton (2008)

    Google Scholar 

  41. Shannon, E.; Abu-Ghannam, N.: Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar. Drug. (2016). https://doi.org/10.3390/md14040081

    Article  Google Scholar 

  42. Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H.: Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29, 949–982 (2017)

    Article  Google Scholar 

  43. Cardoso, S.M.; Pereira, O.R.; Seca, A.M.; Pinto, D.C.; Silva, A.M.: Seaweeds as preventive agents for cardiovascular diseases: from nutrients to functional foods. Mar. Drugs 13, 6838–6865 (2015)

    Article  Google Scholar 

  44. Cox, S.; Abu-Ghannam, N.; Gupta, S.: An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int. Food Res. J. 17, 205–220 (2009)

    Google Scholar 

  45. Pradhan, J.; Das, S.; Das, B.K.: Antibacterial activity of freshwater microalgae: A review. Afr. J. Pharm. Pharmacol. 8, 809–818 (2014)

    Article  Google Scholar 

  46. El-Shouny, W.A.; Gaafar, R.M.; Ismai, G.A.; Elzanaty, M.M.: Seasonal variation of the antibacterial activity of some seaweeds against multidrug resistant pathogenic bacterial strains Egypt. J. Exp. Biol. (Bot.) 13, 341–351 (2017)

    Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Heba Badier, Pediatrics Department, Faculty of Medicine, Tanta University, Egypt, for helping with the collection of blood specimens from diagnosed neonatal patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha Khalil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, M., Ismail, M.M. & El Shafay, S.M. Evaluation of Antibacterial Activity of Macroalgae Extracts as Adjunctive Therapy in Neonates Sepsis Induced by Klebsiella pneumoniae. Arab J Sci Eng 45, 4599–4607 (2020). https://doi.org/10.1007/s13369-020-04602-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04602-7

Keywords

Navigation