Skip to main content
Log in

Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Type 2 diabetes has a strong association with the development of cardiovascular disease, which is grouped as diabetic heart disease (DHD). DHD is associated with the progressive loss of cardiovascular cells through the alteration of molecular signalling pathways associated with cell death. In this study, we sought to determine whether diabetes induces dysregulation of miR-532 and if this is associated with accentuated apoptosis. RT-PCR analysis showed a significant increase in miR-532 expression in the right atrial appendage tissue of type 2 diabetic patients undergoing coronary artery bypass graft surgery. This was associated with marked downregulation of its anti-apoptotic target protein apoptosis repressor with caspase recruitment domain (ARC) and increased TUNEL positive cardiomyocytes. Further analysis showed a positive correlation between apoptosis and miR-532 levels. Time-course experiments in a mouse model of type 2 diabetes showed that diabetes-induced activation of miR-532 occurs in the later stage of the disease. Importantly, the upregulation of miR-532 preceded the activation of pro-apoptotic caspase-3/7 activity. Finally, inhibition of miR-532 activity in high glucose cultured human cardiomyocytes prevented the downregulation of ARC and attenuated apoptotic cell death. Diabetes induced activation of miR-532 plays a critical role in accelerating cardiomyocytes apoptosis. Therefore, miR-532 may serve as a promising therapeutic agent to overcome the diabetes-induced loss of cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: The Framingham study. Am J Cardiol 34(1):29–34. https://doi.org/10.1016/0002-9149(74)90089-7

    Article  CAS  PubMed  Google Scholar 

  2. Preis SR, Hwang S-J, Coady S, Pencina MJ, D'Agostino RB, Savage PJ, Levy D, Fox CS (2009) Trends in All-Cause and Cardiovascular Disease Mortality Among Women and Men With and Without Diabetes Mellitus in the Framingham Heart Study, 1950 to 2005. Circulation 119(13):1728–1735. https://doi.org/10.1161/circulationaha.108.829176

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuethe F, Sigusch H, Bornstein S, Hilbig K, Kamvissi V, Figulla H (2007) Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic cardiomyopathy? Horm Metab Res 39(09):672–676

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh S, Pulinilkunnil T, Yuen G, Kewalramani G, An D, Qi D, Abrahani A, Rodrigues B (2005) Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. American Journal of Physiology - Heart and Circulatory Physiology 289(2):H768–H776. https://doi.org/10.1152/ajpheart.00038.2005

    Article  CAS  PubMed  Google Scholar 

  5. Anderson EJ, Rodriguez E, Anderson CA, Thayne K, Chitwood WR, Kypson AP (2011) Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. American Journal of Physiology - Heart and Circulatory Physiology 300(1):H118–H124. https://doi.org/10.1152/ajpheart.00932.2010

    Article  CAS  PubMed  Google Scholar 

  6. Aravind L, Dixit VM, Koonin EV (1999) The domains of death: evolution of the apoptosis machinery. Trends Biochem Sci 24(2):47–53. https://doi.org/10.1016/S0968-0004(98)01341-3

    Article  CAS  PubMed  Google Scholar 

  7. Cesselli D, Jakoniuk I, Barlucchi L, Beltrami AP, Hintze TH, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2001) Oxidative Stress-Mediated Cardiac Cell Death Is a Major Determinant of Ventricular Dysfunction and Failure in Dog Dilated Cardiomyopathy. Circ Res 89(3):279–286. https://doi.org/10.1161/hh1501.094115

    Article  CAS  PubMed  Google Scholar 

  8. Crespo MJ, Zalacaín J, Dunbar DC, Cruz N, Arocho L (2008) Cardiac Oxidative Stress Is Elevated at the Onset of Dilated Cardiomyopathy in Streptozotocin-Diabetic Rats. Journal of Cardiovascular Pharmacology and Therapeutics 13(1):64–71. https://doi.org/10.1177/1074248407307854

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Zhang T, Dai H, Liu G, Wang H, Sun Y, Zhang Y, Ge Z (2008) Endoplasmic reticulum stress is involved in myocardial apoptosis of streptozocin-induced diabetic rats. J Endocrinol 196(3):565–572. https://doi.org/10.1677/joe-07-0230

    Article  CAS  PubMed  Google Scholar 

  10. Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51(6):1938–1948. https://doi.org/10.2337/diabetes.51.6.1938

    Article  CAS  PubMed  Google Scholar 

  11. Feng B, Chen S, George B, Feng Q, Chakrabarti S (2010) miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes/Metabolism Research and Reviews 26(1):40–49. https://doi.org/10.1002/dmrr.1054

    Article  CAS  PubMed  Google Scholar 

  12. Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86(3):410–420. https://doi.org/10.1093/cvr/cvq010

    Article  CAS  PubMed  Google Scholar 

  13. Diao X, Shen E, Wang X, Hu B (2011) Differentially expressed microRNAs and their target genes in the hearts of streptozotocin-induced diabetic mice. Molecular medicine reports 4(4):633–640

    CAS  PubMed  Google Scholar 

  14. Yu X-Y, Song Y-H, Geng Y-J, Lin Q-X, Shan Z-X, Lin S-G, Li Y (2008) Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun 376(3):548–552. https://doi.org/10.1016/j.bbrc.2008.09.025

    Article  CAS  PubMed  Google Scholar 

  15. Bartel DP (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116(2):281–297. https://doi.org/10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  16. Ghosh N, Katare R (2018) Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovasc Diabetol 17(1):43. https://doi.org/10.1186/s12933-018-0684-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rawal S, Manning P, Katare R (2014) Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovasc Diabetol 13:44. https://doi.org/10.1186/1475-2840-13-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song X, Wang Z, Jin Y, Wang Y, Duan W (2015) Loss of miR-532-5p in vitro promotes cell proliferation and metastasis by influencing CXCL2 expression in HCC. Am J Transl Res 7(11):2254–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang F, Chang JT, Kao CJ, Huang RS (2016) High Expression of miR-532-5p, a Tumor Suppressor, Leads to Better Prognosis in Ovarian Cancer Both In Vivo and In Vitro. Mol Cancer Ther 15(5):1123–1131. https://doi.org/10.1158/1535-7163.MCT-15-0943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang JX, Zhang XJ, Feng C, Sun T, Wang K, Wang Y, Zhou LY, Li PF (2015) MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death Dis 6:e1677. https://doi.org/10.1038/cddis.2015.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. miRIAD: intragenic microRNA database (2014) miRIAD. https://www.bioinfo.mochsl.org.br/miriad/miRNA/hsa-mir-532/. Accessed 5/10/2016 2016

  22. Wang J, Zhang X, Feng C, Sun T, Wang K, Wang Y, Zhou L, Li P (2015) MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell death & disease 6(3):e1677

    Article  CAS  Google Scholar 

  23. Kayal RA, Siqueira M, Alblowi J, McLean J, Krothapalli N, Faibish D, Einhorn TA, Gerstenfeld LC, Graves DT (2010) TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J Bone Miner Res 25(7):1604–1615. https://doi.org/10.1002/jbmr.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li X, Du N, Zhang Q, Li J, Chen X, Liu X, Hu Y, Qin W, Shen N, Xu C, Fang Z, Wei Y, Wang R, Du Z, Zhang Y, Lu Y (2014) MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis 5:e1479. https://doi.org/10.1038/cddis.2014.430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bugger H, Abel ED (2009) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2(9–10):454–466. https://doi.org/10.1242/dmm.001941

    Article  CAS  PubMed  Google Scholar 

  26. Rawal S, Nagesh PT, Coffey S, Van Hout I, Galvin IF, Bunton RW, Davis P, Williams MJA, Katare R (2019) Early dysregulation of cardiac-specific microRNA-208a is linked to maladaptive cardiac remodelling in diabetic myocardium. Cardiovasc Diabetol 18(1):13. https://doi.org/10.1186/s12933-019-0814-4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Davidson MM, Nesti C, Palenzuela L, Walker WF, Hernandez E, Protas L, Hirano M, Isaac ND (2005) Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 39(1):133–147. https://doi.org/10.1016/j.yjmcc.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  28. Rawal S, Munasinghe PE, Nagesh PT, Lew JKS, Jones GT, Williams MJA, Davis P, Bunton D, Galvin IF, Manning P, Lamberts RR, Katare R (2017) Down-regulation of miR-15a/b accelerates fibrotic remodelling in the Type 2 diabetic human and mouse heart. Clin Sci (Lond) 131(9):847–863. https://doi.org/10.1042/CS20160916

    Article  CAS  Google Scholar 

  29. Fomison-Nurse I, Saw EEL, Gandhi S, Munasinghe PE, Van Hout I, Williams MJA, Galvin I, Bunton R, Davis P, Cameron V, Katare R (2018) Diabetes induces the activation of pro-ageing miR-34a in the heart, but has differential effects on cardiomyocytes and cardiac progenitor cells. Cell Death Differ 25(7):1336–1349. https://doi.org/10.1038/s41418-017-0047-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Griesing S, Kajino T, Tai MC, Liu Z, Nakatochi M, Shimada Y, Suzuki M, Takahashi T (2017) Thyroid transcription factor-1-regulated microRNA-532-5p targets KRAS and MKL2 oncogenes and induces apoptosis in lung adenocarcinoma cells. Cancer Sci 108(7):1394–1404. https://doi.org/10.1111/cas.13271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kitago M, Martinez SR, Nakamura T, Sim MS, Hoon DS (2009) Regulation of RUNX3 tumor suppressor gene expression in cutaneous melanoma. Clin Cancer Res 15(9):2988–2994. https://doi.org/10.1158/1078-0432.CCR-08-3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bayoumi AS, Teoh JP, Aonuma T, Yuan Z, Ruan X, Tang Y, Su H, Weintraub NL, Kim IM (2017) MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res 113(13):1603–1614. https://doi.org/10.1093/cvr/cvx132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Donath S, Li P, Willenbockel C, Al-Saadi N, Gross V, Willnow T, Bader M, Martin U, Bauersachs J, Wollert KC, Dietz R, von Harsdorf R (2006) Apoptosis Repressor With Caspase Recruitment Domain Is Required for Cardioprotection in Response to Biomechanical and Ischemic Stress. Circulation 113(9):1203–1212. https://doi.org/10.1161/circulationaha.105.576785

    Article  CAS  PubMed  Google Scholar 

  34. Nam Y-J, Mani K, Ashton AW, Peng C-F, Krishnamurthy B, Hayakawa Y, Lee P, Korsmeyer SJ, Kitsis RN (2004) Inhibition of Both the Extrinsic and Intrinsic Death Pathways through Nonhomotypic Death-Fold Interactions. Mol Cell 15(6):901–912. https://doi.org/10.1016/j.molcel.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  35. Quadrilatero J, Bloemberg D (2010) Apoptosis repressor with caspase recruitment domain is dramatically reduced in cardiac, skeletal, and vascular smooth muscle during hypertension. Biochem Biophys Res Commun 391(3):1437–1442. https://doi.org/10.1016/j.bbrc.2009.12.084

    Article  CAS  PubMed  Google Scholar 

  36. Koseki T, Inohara N, Chen S, Núñez G (1998) ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci 95(9):5156–5160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Loan Le TY, Mardini M, Howell VM, Funder JW, Ashton AW, Mihailidou AS (2012) Low-Dose spironolactone prevents apoptosis repressor with caspase recruitment domain degradation during myocardial infarction. Hypertension. https://doi.org/10.1161/hypertensionaha.111.190488

    Article  PubMed  Google Scholar 

  38. Li X, Du N, Zhang Q, Li J, Chen X, Liu X, Hu Y, Qin W, Shen N, Xu C (2014) MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell death & disease 5(10):e1479

    Article  CAS  Google Scholar 

  39. Avci CB, Harman E, Dodurga Y, Susluer SY, Gunduz C (2013) Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells. Asian Pac J Cancer Prev 14(2):765–768

    Article  PubMed  Google Scholar 

  40. Loan Le TY, Mardini M, Howell VM, Funder JW, Ashton AW, Mihailidou AS (2012) Low-dose spironolactone prevents apoptosis repressor with caspase recruitment domain degradation during myocardial infarction. Hypertension 59(6):1164–1169. https://doi.org/10.1161/HYPERTENSIONAHA.111.190488

    Article  CAS  PubMed  Google Scholar 

  41. Tan W-Q, Wang J-X, Lin Z-Q, Li Y-R, Lin Y, Li P-F (2008) Novel Cardiac Apoptotic Pathway. The Dephosphorylation of Apoptosis Repressor With Caspase Recruitment Domain by Calcineurin 118(22):2268–2276. https://doi.org/10.1161/circulationaha.107.750869

    Article  CAS  Google Scholar 

  42. Lakshmikuttyamma A, Selvakumar P, Kakkar R, Kanthan R, Wang R, Sharma RK (2003) Activation of calcineurin expression in ischemia-reperfused rat heart and in human ischemic myocardium. J Cell Biochem 90(5):987–997

    Article  CAS  PubMed  Google Scholar 

  43. Rawal S, Munasinghe PE, Shindikar A, Paulin J, Cameron V, Manning P, Williams MJ, Jones GT, Bunton R, Galvin I, Katare R (2017) Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc Res 113(1):90–101. https://doi.org/10.1093/cvr/cvw235

    Article  CAS  PubMed  Google Scholar 

  44. Nonaka CKV, Macedo CT, Cavalcante BRR, Alcantara AC, Silva DN, Bezerra MDR, Caria ACI, Tavora FRF, Neto JDS, Noya-Rabelo MM, Rogatto SR, Ribeiro Dos Santos R, Souza BSF, Soares MBP (2019) Circulating miRNAs as Potential Biomarkers Associated with Cardiac Remodeling and Fibrosis in Chagas Disease Cardiomyopathy. Int J Mol Sci. https://doi.org/10.3390/ijms20164064

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jimenez-Lucena R, Rangel-Zuniga OA, Alcala-Diaz JF, Lopez-Moreno J, Roncero-Ramos I, Molina-Abril H, Yubero-Serrano EM, Caballero-Villarraso J, Delgado-Lista J, Castano JP, Ordovas JM, Perez-Martinez P, Camargo A, Lopez-Miranda J (2018) Circulating miRNAs as Predictive Biomarkers of Type 2 Diabetes Mellitus Development in Coronary Heart Disease Patients from the CORDIOPREV Study. Mol Ther Nucleic Acids 12:146–157. https://doi.org/10.1016/j.omtn.2018.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Manning P, Munasinghe PE, Bellae Papannarao J, Gray AR, Sutherland W, Katare R (2019) Acute Weight Loss Restores Dysregulated Circulating MicroRNAs in Individuals Who Are Obese. J Clin Endocrinol Metab 104(4):1239–1248. https://doi.org/10.1210/jc.2018-00684

    Article  PubMed  Google Scholar 

  47. Slater SC, Jover E, Martello A, Mitic T, Rodriguez-Arabaolaza I, Vono R, Alvino VV, Satchell SC, Spinetti G, Caporali A, Madeddu P (2018) MicroRNA-532-5p Regulates Pericyte Function by Targeting the Transcription Regulator BACH1 and Angiopoietin-1. Mol Ther 26(12):2823–2837. https://doi.org/10.1016/j.ymthe.2018.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Royal Society of New Zealand Catalyst Seed Funding (18-UOO-011-CSG), Otago School of Medical Sciences Dean’s Bequest funding; Lottery Health Board Grant (LHR‐2017‐ 46886) and University of Otago Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Katare.

Ethics declarations

Conflict of interest

The authors declare there are no competing financial interests to the work described.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekera, D.N.K., Neale, J.P.H., van Hout, I. et al. Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis 25, 388–399 (2020). https://doi.org/10.1007/s10495-020-01609-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01609-1

Keywords

Navigation