Skip to main content
Log in

Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li1.3Al0.3Ti1.7(PO4)3 (LATP) has become the focus of research because of its high ionic conductivity, high oxidation voltage, and low air sensitivity. However, Ti4+ is easily reduced by Li metal. In this paper, amorphous Li1.5Al0.5Ge1.5(PO4)3 (a-LAGP) is introduced as an interface modification layer, because LAGP has the small electrochemical potential difference and Ge4+ is more difficult to be reduced by Li. Radio frequency sputtering (RF sputtering) is adopted to modify the a-LAGP thickness less than 100 nm. Compared with crystalline LAGP layer, a-LAGP has a better effect on improving the interface stability of LATP and Li. With the a-LAGP film, the Li/a-LAGP/LATP/a-LAGP/Li symmetrical cell is still stable after 100 cycles with the over potential changing from 1 V to 3 V. The probable mechanism of the good stability between a-LAGP and Li are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W (2018) Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 30(17):1705702

  2. West WC, Whitacre JF, Lim JR (2004) Chemical stability enhancement of lithium conducting solid electrolyte plates using sputtered LiPON thin films. J Power Sources 126:134–138

    Article  CAS  Google Scholar 

  3. Cheng XB, Hou TZ, Zhang R, Peng HJ, Zhao CZ, Huang JQ (2016) Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv Mater 28:2888–2895

    Article  CAS  Google Scholar 

  4. Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB (2016) Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J Am Chem Soc 138:9385–9388

    Article  CAS  Google Scholar 

  5. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:16103

    Article  CAS  Google Scholar 

  6. Xu XX, Wen ZY, Yang XL, Zhang JC, Gu ZH (2006) High lithium ion conductivity glass-ceramics in Li2O–Al2O3–TiO2–P2O5 from nanoscaled glassy powders by mechanical milling. Solid State Ionics 177:2611–2615

    Article  CAS  Google Scholar 

  7. Xu X, Wen Z, Gu Z (2004) Lithium ion conductive glass ceramics in the system Li1.4Al0.4(Ge1−xTix)1.6(PO4)3 (x=0–1.0). Solid State Ionics Diff React 171:207–213

    Article  CAS  Google Scholar 

  8. Ma C, Chen K, Liang CD, Nan CW, Ishikawa R, More K, Chi MF (2014) Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. Energy Environ Sci 7:1638

    Article  CAS  Google Scholar 

  9. Kasper HM (1969) Series of rare earth garnets Ln3+3M2Li+3O12 (M=Te, W). Inorg Chem 8:1000–1002

    Article  CAS  Google Scholar 

  10. Hayashi A, Minami K, Ujiie S, Tatsumisago M (2010) Preparation and ionic conductivity of Li7P3S11−z glass-ceramic electrolytes. J Non-Cryst Solids 356:2670–2673

    Article  CAS  Google Scholar 

  11. Lim HD, Lim HK, Xing X, Lee BS, Liu H, Coaty C (2018) Solid electrolyte layers by solution deposition. Adv Mater Interfaces 5(8):1701328

  12. Lim HD, Yue X, Xing X, Petrova V, Gonzalez M, Liu H (2018) Designing solution chemistries for low-temperature synthesis of sulfide-based solid electrolytes. J Mater Chem A. https://doi.org/10.1039/C8TA01800F

  13. Zhao EQ, Ma FR, Guo YD, Jin YC (2016) Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries. RSC Adv 6:92579–92585

    Article  CAS  Google Scholar 

  14. Zhu YZ, He XF, Mo YF (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7:23685–23693

    Article  CAS  Google Scholar 

  15. Liu YL, Sun Q, Zhao Y, Wang BQ, Kaghazchi P, Adair KR, Li RY, Zhang C, Liu JR, Kuo LY, Hu YF, Sham TK, Zhang L, Ynag R, Lu SG, Song XP, Sun XL (2018) Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl Mater Interfaces 10:31240–31248

    Article  CAS  Google Scholar 

  16. Kotobuki M, Hoshina K, Kanamura K (2011) Electrochemical properties of thin TiO2 electrode on Li1+xAlxGe2−x(PO4)3 solid electrolyte. Solid State Ionics 198:22–25

    Article  CAS  Google Scholar 

  17. Wolcott A, Smith WA, Kuykendall TR, Zhao YP, Zhang JZ (2099) Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small 5:104–111

    Article  Google Scholar 

  18. Hoshina K, Yoshima K, Kotobuki M, Kanamura K (2012) Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol–gel process and its application of all-solid-state lithium ion batteries using Li1+xAlxTi2−x(PO4)3 solid electrolyte. Solid State Ionics 209-210:30–35

    Article  CAS  Google Scholar 

  19. Ling Q, Ye ZZ, Xu HR, Zhu GS, Zhang XY, Yu AB (2016) Preparation and electrical properties of amorphous Li-Al-Ti-P-O thin film electrolyte. Mater Lett 169:42–45

    Article  CAS  Google Scholar 

  20. Chen KH, Wood KN, Kazyak E, Lepage WS, Davis AL, Sanchez AJ, Dasgupta NP (2017) Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J Mater Chem A 5:11671–11681

    Article  CAS  Google Scholar 

  21. Dashjav E, Ma QL, Xu Q, Tsai CL, Giarola M, Mariotto G, Tietz F (2018) The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates. Solid State Ionics 321:83–90

    Article  CAS  Google Scholar 

  22. Lasri K, Dahbi M, Liivat A, Brandell D, Edstrom K, Saadoune I (2013) Intercalation and conversion reactions in Ni0.5TiOPO4 Li-ion battery anode materials. J Power Sources 229:265–271

    Article  CAS  Google Scholar 

  23. Fu Y, Ming H, Zhao SY, Guo J, Chen MZ, Zhou Q, Zheng JW (2015) A new insight into the LiTiOPO4 as an anode material for lithium ion batteries. Electrochim Acta 185:211–217

    Article  CAS  Google Scholar 

  24. Giarola M, Sanson A, Tietz F, Pristat S, Dashjay E, Rettenwander D, Redhammer GJ, Mariotto G (2017) Structure and vibrational dynamics of NASICON-type LiTi2(PO4)3. J Phys Chem C 121:3697–3706

    Article  CAS  Google Scholar 

  25. Beneventi P, Bersani D, Lottici PP, Kovacs L, Cordioli F, Montenero A, Gnappi G (1995) Raman study of Bi2O3-GeO2-SiO 2 glasses. J Non-Cryst Solids 192&193:258–262

    Article  CAS  Google Scholar 

  26. Grzechnikyz A, Chizmeshyay AVG, Wolfy GH, McMillan PF (1998) J Phys Condens Matter 10:221–233

    Article  Google Scholar 

  27. Verweij H, Buster JHJM (1979) The structure of lithium, sodium and potassium germanate glasses, studied by Raman scattering. J Non-Cryst Solids 34:81–99

    Article  CAS  Google Scholar 

  28. Furukawa T, White WB (1991) Raman spectroscopic investigation of the structure of silicate glasses. IV Alkali–silico–germanate glasses. J Chem Phys 95:776–784

    Article  CAS  Google Scholar 

  29. Wang X, Zeng W, Hong L, Xu WW, Yang HK, Wang F, Duan HG, Tang M, Jiang HQ (2018) Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat Energy 3:227–235

    Article  CAS  Google Scholar 

  30. Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen GY, Doeff M (2015) Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. ACS Appl Mater Interfaces 7:2073–2081

    Article  CAS  Google Scholar 

Download references

Funding

Financial support from the National Natural Science Foundation of China (Grants 61534005, 21761132030), General Armaments Department, People’s Liberation Army of China (6140721040411), Natural Science Foundation of Jiangxi Province (20192ACBL20048), Scientific Research Project of Fujian Provincial Department of Education (JAT191150) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Han or Songyan Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhang, Z., Luo, L. et al. Enhancing the interface stability of Li1.3Al0.3Ti1.7(PO4)3 and lithium metal by amorphous Li1.5Al0.5Ge1.5(PO4)3 modification. Ionics 26, 3815–3821 (2020). https://doi.org/10.1007/s11581-020-03503-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03503-x

Keywords

Navigation